

MIRACLUE Migdal effect search using position sensitive gaseous detectors

Kiseki Nakamura (Tohoku university) on behalf of MIRACLUE collaboration

Introduction

MIRACLUE project

Introduction

- Migdal effect
 - Sudden nuclei movement --> additional ionization/excitation (low probability)
 - First raised by A.B.Migdal 1939
- Dark matter search
 - Nuclear recoil + Migdal effect
 - increase observable energy
 - increase low-mass DM sensitivity
- --> We would like to measure Migdal effect !

MIRACLUE experiment

- About MIRACLUE experiment
 - neutron beam experiment using position sensitive gaseous detectors
 - 2-cluster topology as a signal
 - Developing Xe (Tohoku univ.) and Ar (Kobe univ.) detectors
 - PTEP (2020) ptaa162
 - Noble gas in gas state is similar situation to Ibe's paper [JHEP 03 (2018) 194]
- Ar detector
 - NEWAGE (DM search) technique
 - μ-PIC 400μm readout
 - Thin film TPC cage
- Xe detector
 - AXEL (0nbb search) technique
 - 1cm pitch pixel readout with EL photons
 - High energy resolution

Beam test history

- AIST (Tsukuba city)
 - Provide standard neutron field
 - Several energy choice: 565keV, 14.8MeV, etc.
 - Grating floor to reduce gamma-ray by (n,γ)

date	place	energy	detector	purpose	
2022/3	AIST	565keV	He3、BGO	environmental measurement	
2022/4	AIST	565keV	Xe、Ar	trial of gas (Xe, Ar) detectors	Today's main talk
2022/12	AIST	565keV	Ar、BGO	large Ar detector	
2023/7	CYRIC	~10MeV	Xe、He3、BGO	CYRIC test (w/ old Xe)	
2024/1	AIST	565ke∀ >14MeV	Ar、He3、BGO	Ar detector	brief highlight

14MeV beam test for Ar detector

- Beam: 14.8MeV (DT neutron) , 1.25 x 10² /cm²/sec
- Thin chamber: EVOH bag
- 2 cluster demonstration
- Analysis ongoing

date	place	energy	detector	purpose
2022/3	AIST	565keV	He3、BGO	environmental measurement
2022/4	AIST	565keV	Xe、Ar	trial of gas (Xe, Ar) detectors
2022/12	AIST	565keV	Ar、BGO	large Ar detector
2023/7	CYRIC	~10MeV	Xe、He3、BGO	CYRIC test (w/ old Xe)
2024/1	AIST	565keV >14MeV	Ar、He3、BGO	Ar detector

Xe TPC

neutron beam test and analysis

565keV beam test for Xe detector

- Neutron beam
 - 565keV neutron
 - ~2000 neutron/cm²/sec@1m
- Collimator
 - neutron shield
 - LiF50% doped polyethylene
- Lead brick
 - gamma-ray shield
 - 2.2MeV from collimator
 - 478keV from target

date	place	energy	detector	purpose	
2022/3	AIST	565keV	He3、BGO	environmental measurement	
2022/4	AIST	565keV	Xe、Ar	trial of gas (Xe, Ar) detectors	Today's main ta
2022/12	AIST	565keV	Ar, BGO	large Ar detector	
2023/7	CYRIC	~10MeV	Xe、He3、BGO	CYRIC test (w/ old Xe)	
2024/1	AIST	565ke∀ >14MeV	Ar, He3, BGO	Ar detector	

Xe TPC

- TPC
 - EL readout
 - 168ch 1cm pitch
- Gas
 - Xe 5atm, sealed gas, passive filter
- Electric field
 - drift region: 64 V/cm/atm
 - EL region: 1.92 kV/cm/atm

Energy spectrum

- Several peaks are clearly observed (w/ good energy resolution)
 - gamma-rays from F and Xe
- Measured time
 - realtime: 6545.5 sec
 - livetime: 174.106 sec (livetime ratio: only 2.7%)
 - In reality, the systematic error of pile-up due to accidental hits can be exist
- current sensitivity (about ~ 10^5) is limited by BG

565keV neutron

beam test

Event topology

565keV neutron beam test

Category

ල 250

245

240-

235

230-

225

220

- Black: nuclear recoil ?
- Blue: 30keV gamma-ray event
- Red: 2-cluster event (signal region)
- Orange: 200keV gamma-ray event
- yellow: spark like ?
- --> 2-cluster event is clearly obtained!

BG study

with Geant4

Background study by Geant4

Construct Geant4 geometry to study the origin of the background

Future plan

• 5 order S/N improvement ideas

update	signal	BG	
Energy: 565keV> 14MeV	20 (Migdal probability)	O(1)	
Low material TPC (w/o PTFE)	1	1/20 (Geant4 suggestion)	
Liquid scintillator	0.1 (due to solid angle)	O(1e-3)	
neutron shield	1		
livetime: 3min> 3day	1440	1440	
total	3e3 times	7e-2 times	

Summary

- MIRACLUE experiment
 - Migdal effect search with position sensitive gaseous detectors (Xe, Ar)
 - Select 2-cluster event topology by K-alpha X-ray
- 565keV neutron beam test for Xe detector as a trial
 - clear gamma-ray BG peaks are observed
 - energy resolution and tracking ability is good
 - current sensitivity for Migdal search is not so good due to gamma-ray BG, but the origin of the source is well identified by Geant4 simulation
- Future plan
 - Xe TPC
 - 14MeV neutron beam test
 - Low material TPC cage (w/o PTFE)
 - Ar TPC
 - 565keV neutron beam test
 - considering dynamic range of signal size
 - LS tagging
 - to obtain high purity nuclear scattering data
 - quenching facto measurement in the gaseous Xenon
 - form factor measurement to check the consistency of ENDF database

