The COSINUS dark matter search experiment

DAMA/LIBRA MODULATION SIGNAL TIME DISTRIBUTION

~25years of data 2.86 tonne years exposure 13.7σ statistical significance

DAMA/LIBRA AND THE STANDARD SCENARIO

WHAT ARE THE UNKNOWNS?

 \rightarrow Target material dependence

→ → Astroparticle Physics European Consortium (APPEC) Recommendation: *"The long-standing claim from DAMA/LIBRA [...] needs to be independently verified using the same target material."*

Aims at a model- and material-independent test of DAMA

Novel and unique: operation of Nal as cryogenic detector

- \rightarrow Low threshold (in particular for nuclear recoils)
- \rightarrow Precise energy information
- \rightarrow <u>Signal-only</u> measurement of potential DM signal

~30 scientists

cosinus.it

07/2024

ON TRACK TOWARDS THE MEASUREMENT

Cryogenic Nal detector

Underground facility

CRYOGENIC Nal DETECTOR

CRYOGENIC Nal DETECTOR

Phonon signal (~90 %)

(Almost) independent of particle type

Precise measurement of the deposited energy

SCINTILLATING Nai CALORIMETER

Phonon signal (~90 %)

(Almost) independent of particle type

Precise measurement of the deposited energy

SIGNAL SIGNAL

Scintillation light (few %)

Particle-type dependent → LIGHT QUENCHING

SCINTILLATING Nai CALORIMETER

Two-channel readout

(phonon + scintillation light):

- Low nuclear recoil threshold
- Signal to background discrimination on an event-by-event basis
- \rightarrow Signal-only measurement

A CRYOGENIC Nai DETECTOR IS AWESOME: WHY DID IT NOT EXIST? \rightarrow BECAUSE Nai IS NOT Naice!

PROBLEM

SOLUTION

Low Debye temperature

Properties	Nal(pure)	Csl(pure)	$CdWO_4$	CaWO ₄
Density [g/cm ³]	3.67	4.51	7.9	6.12
Melting point [°C]	661	894	1598	1650
Structure	CsCl	CsCl	Wolframite	Scheelite
λ_{max} at 300 K [nm]	\sim 300	\sim 315	~ 475	420-425
Hygroscopic	yes	slightly	no	no
Θ_D [K]	169	125	-	335
Photons per keV at 3.4 K	19.5 ± 1.0	58.9±5.6	-	-
Mean energy of emitted photon [eV]	3.3	3.9	-	3.14

Small signal amplitudes

remoTES detector design

Nal \rightarrow Au-wire/pad \rightarrow TES Phonons couple directly to electron system of Au-pad¹²

remotes <u>Measurement</u> with Nai target

Background data Neutron calibration PRD \mathcal{O} 00 2.52.5Background data $-e^{-}$ band Neutron calibration e^{-} band \sim β Acceptance region I band $- \gamma$ band ∞ γ band 2.02.0Na band inelastic e d \mathcal{O} 1.51.5accepte n-scattering \bigcirc -Light yield Light yield PRD 1.01.00.50.56 8 9 6 \bigcirc 0.00.0<u>____</u> Na/ I recoils [-0.5-0.5.0 80 80 0 ∞ from elastic \sim \sim ⊳ arXiv: n-scattering -1.0-1.0251251752002550751251505075100150100 arXi Energy (keV) Energy (keV) first Nal detector with nuclear recoil threshold: <2keV particle identification on

event-by-event basis

FIRST COSINUS DARK MATTER RESULTS

The COSINUS FACILITY @ LNGS approved 2020

Clean room

Water tank

LNGS – HALL B

WHY WATER?

<u>arXiv:2106.07390</u>, EPJ-C 82, 248, 2022 <u>arXiv:2406.12870</u>, EPJ-C 84, 551, 2024

- 1. Good moderator for neutrons
- Veto of (cosmogenic) muons via Cherenkov light emitted in water → Instrumentation of water tank with 30PMTs

Rate of cosmogenic neutrons:

No veto: (3.5 ± 0.7) cts kg⁻¹ yr⁻¹ With veto: $<(0.30 \pm 0.02)$ cts kg⁻¹ yr⁻¹

With veto: < 1 expected cosmogenic neutron event for target exposure of 1000 kg days

CRYOSTAT

Dry dilution refrigerator to reach 10 mK:

- 3500 mm total length
- custom-made design
- UltraQuiet Technology (UQT)
- internal copper shield (190 kg)

FROM DRAWINGS TO REALITY

Buildings finished 2022

Cryostat installed and cooled to 9mK 2024

Florian Reindl

Cryostat commissioning ongoing

Reached 9mK with Cu-shield installed

PMT successfully tested above ground at LNGS

Installation of PMTs and TYVEK curtain (dead layer) in water tank ongoing right now

FINALIZE IT! THE DETECTOR

Nal crystals are in production at SICCAS

Test of final detector design ongoing

Si-beaker for 4π active surrounding of the crystal

TAKE DATA Staged Approach: RUN 1

Production and assembly of **8 detector modules** for Run 1

Start data taking @LNGS beginning 2025

→ collect 100 kg days

 \bullet

8 detector modules per level

3 levels in final stage

PHYSICS REACH

COSINUS KEY FACTS TO REMEMBER

Start data taking: 2025

Signal only measurement Cryogenic Nal detectors with event-by-event particle discrimination

In-situ determination of quenching factors Model-independent cross-check of the DAMA/LIBRA signal

Florian Reind

Modern lowbackground facility with water shielding at LNGS 27

07/2024

Detector poster by Moritz Kellermann

COSINUS Inauguration

Laboratori Nazionali del Gran Sasso

CRYSTAL PRODUCTION FOR COSINUS

The COSINUS Nal crystals will be produced in 2024/2025 by SICCAS (Shanghai Institute of Ceramics, Chinese Academy of Sciences), using ASTROGRADE powder, according to the following scheme:

In 2024

24 (phase 1 detector) + 11 (test) cubic crystals (2.1 x 2.1 x 2.1) cm³ - 35 g each

In 2025

24 (phase 2 detector) + 11 (test) hexagonal crystals - 108 g each

	К	Th	U
Test Crystal n. 1	125(25) ppb	<15 ppt	<10 ppt
Test Crystal n. 2	110(30) ppb	<15 ppt	<15 ppt

COSINUS HEXAGONAL CRYSTALS

SIMULATED DATA FOR 100 kg days (gross-exposure)

- 1keV nuclear recoil threshold
- flat background: 1 /(keV kg d)
 + ⁴⁰K background: 600µBq/kg
- dark matter spectrum: 10 GeV/c², 2x10⁻⁴ pb
- values for quenching factors from:

Tretyak, Astropart. Phys. 33, 40 (2010)

Eur. Phys. J. C (2016) 76:441 DOI 10.1140/epjc/s10052-016-4278-3

WHAT DAMA/LIBRA SEES ...

DOI 10.1140/epjc/s10052-016-4278-3

WHAT COSINUS SEES ...

- 1keV nuclear recoil threshold
- flat background: 1 /(keV kg d)
 + ⁴⁰K background: 600µBq/kg
- dark matter spectrum: 10 GeV/c², 2x10⁻⁴ pb
- values for quenching factors from:

Tretyak, Astropart. Phys. 33, 40 (2010)

Eur. Phys. J. C (2016) 76:441 DOI 10.1140/epjc/s10052-016-4278-3

LIGHT YIELD Example from CRESST using CaWO₄

SIMULATION

100 kg-days before cuts 1keV <u>Nuclear recoil</u> threshold

(1-6)keVee = modulation signal in DAMA