Transmon Qubit Constraints on Light Dark Matter

Anirban Das

Seoul National University

PRL 132(2024) 12, 121801 (2210.09313) & 2405.00112 with R. Leane & N. Kurinsky

IDM 2024

L'Aquila

July 9, 2024

Conventional Direct Detection Experiments

All looking for individual scattering events from DM

Power Deposited by Dark Matter Scattering

Instead of individual recoil, use power measurement of quantum devices to probe thermal DM

PRL 132(2024) 12, 121801

Power Deposition Mechanism

DM mostly excites phonons in this low mass regime: MeV - GeV

Campbell-Deem et al. (PRD 2022)

Power Deposited by Dark Matter Scattering

The excited phonons could directly be detected

or

In a SC, the phonons will break Cooper pairs & release quasiparticles that can be detected

Captured Dark Matter on Earth can be probed too

Much lower energy relative to halo DM

 $egin{aligned} m_\chi &= 1~{
m GeV}\ T_\chi &pprox 300~{
m K}\ E_{
m kin} &= \mathcal{O}(10~{
m meV}) \end{aligned}$

Low threshold experiments are essential

Superconductor-based Quantum Devices

Quasiparticle-induced decoherence in transmon qubit

 $P = 5.7 \times 10^{-24} \text{ W} \mu \text{m}^{-3}$

Low noise bolometer Infrared sensor

 $P = 1.7 \times 10^{-20} \text{ W} \mu \text{m}^{-3}$

SuperCDMS Si detector

 $P = 3 \times 10^{-21} \text{ W} \mu \text{m}^{-3}$

Nature Comm. 4, 1913 (2013)

Nature Astronomy 2, 90-97 (2018)

Superconductor-based Quantum Devices

Boltzmann equation for quasiparticles in a superconductor

$$egin{aligned} rac{dn_{
m qp}}{dt} &= -ar{\Gamma}n_{
m qp}^2 - \Gamma_T n_{
m qp} + rac{P_{
m DM}}{2\Delta} \end{aligned}$$
 equilibrium: $rac{P_{
m DM}}{2\Delta} &= ar{\Gamma}n_{
m qp}^2 + \Gamma_T n_{
m qp} \end{equation}$ $n_{
m qp} &pprox \left(rac{P_{
m DM}}{3.6 imes 10^{-21} \mathrm{W}\,\mu\mathrm{m}^{-3}}
ight) \mu\mathrm{m}^{-3}$

In

New Limits on DM-nuclear cross section

We put new limits on DM-nucleon cross section using the unprecedented power sensitivity for both halo & thermalized populations

Das, Kurinsky, Leane (PRL 2024)

New Limits on DM-nuclear cross section

We put new limits on DM-nucleon cross section using the unprecedented power sensitivity for both halo & thermalized populations

Strong Limits for sub-fraction DM

Qubit measurements are sensitive to small fractional DM outperforming other underground experiments

Das, Kurinsky, Leane (2405.00112)

Promising Future Outlook

- Significant progress in Qubit research in last few years to achieve low QP bkg
- We can realistically probe $\sigma = 10^{-32} \text{ cm}^2$ within next few years

Challenges for detection:

- → Power calibration of the calorimeter
- → Neutron scattering
- → Radioactivity & cosmic rays
- → Unknown systematics

Summary

- → As we try to probe lighter mass DM, experiments become more challenging
- → Mesoscopic quantum devices are promising to probe lighter DM and feeble interaction
- → Good sensitivity for small sub-fractional DM too
- → Constraints are set to improve by a few orders of magnitude within next few years

Paper

Phonons are quanta of crystal lattice oscillation

Dark Matter Interaction Rate

Velocity-averaged interaction rate

$$\begin{split} \Gamma &= \frac{\pi \sigma_N n_{\chi}}{\rho_T \mu^2} \int d^3 v f_{\chi}(\mathbf{v}) \int \frac{d^3 q}{(2\pi)^3} F_{\mathrm{med}}^2(q) S(\mathbf{q}, \omega_{\mathbf{q}}) \\ & \text{Structure Factor:} \\ \text{detector response} \end{split} \\ \frac{d\Gamma}{d\omega} &= \frac{\pi \sigma_N n_{\chi}}{\rho_T \mu^2} \int d^3 v f_{\chi}(\mathbf{v}) \int \frac{d^3 q}{(2\pi)^3} F_{\mathrm{med}}^2(q) S(\mathbf{q}, \omega) \delta(\omega - \omega_{\mathbf{q}}) \\ & \omega_{\mathbf{q}} &= \mathbf{q} \cdot \mathbf{v} - \frac{q^2}{2m_{\chi}} = E_f - E_i \quad \text{Energy transfer in a single scattering} \\ F_{\mathrm{med}} &= 1 \qquad F_{\mathrm{med}} = (\alpha m_e/q)^2 \\ & \text{Heavy mediator} \qquad \qquad \text{Light mediator} \end{split}$$

Single & Multi-phonon Structure Factor

Incoherent Approx.

$$q > q_{\text{BZ}}$$
 $S_N \simeq \frac{2\pi}{V_c} \sum_d f_d^2 e^{-2W_d(q)} \sum_n \left(\frac{q^2}{2m_d}\right)^2 \frac{1}{n!} \left(\prod_i \int d\omega_i \frac{D_d(\omega_i)}{\omega_i}\right) \delta(\omega - \sum_j \omega_j)$

Approaches nuclear recoil in large ω and q limit

18

Structure factors of AI & Si

Phonon structure factors $S(q,\omega)$ in Al & Si are favorable for scattering with O(10 meV) energy DM

arXiv:2210.09313

Differential Scattering Rate in AI & Si

Phonon structure factors $S(q,\omega)$ in Al & Si are favorable for scattering with O(10 meV) energy DM

Floating Dark Matter on Earth

For DM mass 1-10 GeV and xsec > 10⁻³⁵ cm², the thermalized population can get very dense near Earth's surface

However, these DM particles have very low energy, $E_{DM} \sim O(10 \text{ meV})$