

WIMP Dark Matter searches with the XENONnT experiment

Henning Schulze Eißing (h.se@uni-muenster.de) on behalf of the XENON collaboration

living.knowledge

GRK 2149

Bundesministerium für Bildung und Forschung

The XENONnT Experiment

- Dark matter direct detection experiment
- At the INFN Laboratori Nazionali del Gran Sasso (LNGS) in Italy
- Underground ultra-low background experiment

Dual Phase Time Projection Chamber

- Scintillation and ionization
- Photosensor arrays at top and bottom
- Detection of direct scintillation light by PMTs (S1)
- Drift and extraction of electrons into the gas phase
- Secondary proportional scintillation signal (S2)

Signals in Liquid Xenon

Signal Type Discrimination

- Separation of ER and NR interactions by ratio of light to charge signals
- XENON detectors conceived and designed to search for NR signals created by **WIMPs**
- ~ 1keV ER recoil energy deposited in the liquid xenon target is enough to produce a characteristic scintillation and charge signal

Additional physics cases

- Solar axions, axion-like particles
- Solar neutrinos, SN neutrinos, CEvNS
- (neutrinoless) Double β -Decay, double EC
- Other BSM processes

cS2[PE]

Three Nested Detectors

Time Projection Chamber (TPC)

- 8.5 t ultra pure xenon target
- 5.9 t Xe observed by 494 PMTs
- Active target diameter/height: 1.3m/1.5m

Neutron Veto (NV)

- (Gd-salted) Water Cherenkov detector
- 120 8" PMTs inside enclosure of reflective panels
- Neutron tagging efficiency of 53% in pure water

Muon Veto (MV)

- 700 t Water Cherenkov detector
- 84 8" PMTs
- Active veto against muons
- Passive shielding

Henning Schulze Eißing arXiv:2402.10446 accepted at Eur. Phys. J. C

Three Nested Detectors

Time Projection Chamber (TPC)

- 8.5 t ultra pure xenon target
- 5.9 t Xe observed by 494 PMTs
- Active target diameter/height: 1.3m/1.5m

The XENONnT Neutron Veto: performances without and with Gd-doping Marco Selvi – Today 17:10

Neutron Veto (NV)

- (Gd-salted) Water Cherenkov detector
- 120 8" PMTs inside enclosure of reflective panels
- Neutron tagging efficiency of 53% in pure water

Muon Veto (MV)

- 700 t Water Cherenkov detector
- 84 8" PMTs
- Active veto against muons
- Passive shielding

Henning Schulze Eißing arXiv:2402.10446 accepted at Eur. Phys. J. C

Three Nested Detectors

Time Projection Chamber (TPC)

- 8.5 t ultra pure xenon target
- 5.9 t Xe observed by 494 PMTs
- Active target diameter/height: 1.3m/1.5m

Neutron Veto (NV)

- (Gd-salted) Water Cherenkov detector
- 120 8" PMTs inside enclosure of reflective panels
- Neutron tagging efficiency of 53% in pure water

Muon Veto (MV)

- 700 t Water Cherenkov detector
- 84 8" PMTs
- Active veto against muons
- Passive shielding

Henning Schulze Eißing arXiv:2402.10446 accepted at Eur. Phys. J. C

Selected Upgrades

	Max TPC drift time	Electron Lifetime	e ⁻ survival @ max. drift length
XENON1T	0.67 ms	0.65 ms	30%
XENONnT	2.2 ms	>15 ms	> 90%

Liquid xenon purification

- LXe purity is crucial to drift electrons along the entire detector length
- Novel liquid-phase purification system with replaceable filters and extremely low radon emanation
- High flow of 2 liters LXe per minute, recirculate entire inventory in 18h

Henning Schulze Eißing

Eur. Phys. J. C 82, 860 (2022)

Selected Upgrades

Radon Distillation Column

- ²²²Rn daughters are the main background
- Continuous emanation from detector components
- Continuous cryogenic distillation removing Rn from LXe
- High flow: 71 kg/h (200 slpm)
- $< 1 \mu Bq/kg^{222}$ Rn activity

XENONnT SR0

Data Taking

- 97.1 days exposure from July 6th to November 11th 2021
- 95.1 days lifetime corrected
- Rn column in gas-only mode

Detector Conditions

- >96% PMTs working, gain stable at 3%
- 23 V/cm drift field, extraction field in LXe 2.9 kV/cm
- Localized high single-electron emission, occurring seemingly at random: cured with short anode ramp-down

Phys. Rev. Lett. 129, 161805 (2022) Phys. Rev. Lett. 131, 041003 (2023) **10**

Calibration and Analysis

Multi-step analysis effort

- Peak and event reconstruction
- Signal Corrections Compensate inhomogeneous (spatial, temporal) detector response
- Data quality validation
- Cuts against backgrounds
- Background modeling
- Detector response modeling
- Inference

arXiv:2406.13638

ER and NR Response

Electronic Recoil Calibration

- **²¹²Pb** from ²²⁰Rn gives a roughly flat β -spectrum to estimate cut acceptances and energy threshold
- ³⁷Ar gives a mono-energetic 2.82 keV peak to model the low energy response and resolution near the detector energy threshold

Nuclear Recoil Calibration

• External ²⁴¹AmBe neutron source with clean NR selection via coincident 4.4 MeV γ -ray observed in the neutron veto

Physics Searches

Electronic Recoils

- Search in energy reconstructed from S1 and S2
- Unprecedented low background: 15.8 \pm 1.3 events / (t \cdot y \cdot keV)
- No low-energy ER excess found excluding BSM explanation of XENON1T excess

Physics Searches

Electronic Recoils

- Search in energy reconstructed from S1 and S2
- Unprecedented low background: 15.8 \pm 1.3 events / (t \cdot y \cdot keV)
- No low-energy ER excess found excluding BSM explanation of XENON1T excess

Phys. Rev. Lett. 129, 161805 (2022)

Nuclear Recoils

- Search in cS1, cS2 and r (radius) for WIMP dark matter
- Even lower NR background boosted by ER/NR discrimination
- Blind analysis leading to stringent limits on WIMP interactions

Phys. Rev. Lett. 131, 041003 (2023)

Accidental Coincidence Background Modeling for Low Energy Nuclear Recoil Search in XENONnT Kexin Liu – Today 15:00

XENONnT physics-driven 6D Surface **Background Model** Cecilia Ferrari – Poster

Backgrounds in WIMP search

ER Background

- Dominated by radon background (²¹⁴Pb beta decay, GXe extraction only)
- Sub-dominant ⁸⁵Kr background (cryo. Distillation)

Surface Background

- ²¹⁰Pb plate-out at the PTFE walls leading to ²¹⁰Po α decays with electron loss
- Suppressed by fiducial volume cut

Accidental Coincidences

- Random pairing of isolated S1 and S2 signals
- Suppression using a gradient BDT cut based on S2 shape, R and Z information

NR Background

- Radiogenic neutron rate constrained by NV tagging
- CEvNS constrained from solar ⁸B neutrino flux ۲

Henning Schulze Eißing

15

Signal like region, containing 50% of WIMP signal with highest signal-to-noise

WIMP search results

	Nominal	Best Fit (200 GeV/c ²)	
ER	134	135(+12)(-11)	
Neutrons	1.1(+0.6)(-0.5)	1.1 ± 0.4	
CEvNS	0.23 ± 0.06	0.23 ± 0.06	
AC	4.3 ± 0.2	4.32 ± 0.16	
Surface	14 ± 3	12(+0)(-4)	
Total Background	154	152 ± 12	
WIMP	-	2.6	
Observed	-	152	

No significant excess found!

Limit on SI WIMP-nucleon Cross Section

Limit Setting

- Unbinned maximum likelihood
- Power constraint limits (PCL) to avoid spurious exclusion limits
- Only exclude the parameter space that the detector is sensitive to.
- Conservative choice at median of sensitivity band
- This needs to be discussed within the community

Results

- Strongest limit: $2.6 \cdot 10^{-47} cm^2$ at WIMP mass of $28 \ GeV/c^2$
- Factor 1.6 improvement w.r.t. XENON1T (with considerably shorter lifetime)
- Similar improvements in spin-dependent limits

Limit on SI WIMP-nucleon Cross Section

Limit Setting

- Unbinned maximum likelihood
- Power constraint limits (PCL) to avoid spurious exclusion limits
- Only exclude the parameter space that the detector is sensitive to.
- Conservative choice at median of sensitivity band
- This needs to be discussed within the community

Results

- Strongest limit: $2.6 \cdot 10^{-47} cm^2$ at WIMP mass of $28 \ GeV/c^2$
- Factor 1.6 improvement w.r.t. XENON1T (with considerably shorter lifetime)
- Similar improvements in spin-dependent limits

Summary and Outlook

XENONnT SR0

- Ultrapure target with an electron lifetime above 15 ms
- Lowest ER background in the field: $(15 \pm 1.3)(t \text{ yr keV})^{-1}$ ~5x background reduction w.r.t. XENON1T

350

300

200

150

50

[days] 250

First Results

- Blinded electronic recoil (ER) and nuclear recoil (NR) searches
- No significant excess over background found

Prospects

- ~2x improved ²²²Rn level
- Improved neutron tagging by Gd-loaded neutron veto
- 100 Bay WIMP search with increased exposure in preparation
- Continue to accumulate low BG data

Henning Schulze Eißing

Backup Slides

XENON Dark Matter Project

Henning Schulze Eißing

J. Inst. 18, P07054 (2023)

Selected Upgrades

Triggerless Data Acquisition

- All data above per-channel threshold stored long-term
- Fully live processing

Open Source Software

- Available on GitHub
- Processing: strax, straxen
- Simulation: fuse, appletree, WFSim, epix
- Inference: alea

²²²Rn Background Reduction

Radon in XENONnT

- ²²²Rn daughters are the main background
- Continuous emanation from detector components
- Homogeneous distribution in detector

²¹⁴**Pb**

- Beta decay with high probability to ground state of ²¹⁴Bi
- Leakage of ER events into NR region

Radon reduction

- Cryogenic distillation removing Rn from LXe
- Newly developed Distillation column
- High flow: 71 kg/h (200 slpm)
- $< 1 \mu Bq/kg^{222}$ Rn activity

Henning Schulze Eißing

XENON

Combined Energy Scale

Universität Münster

- Use anti-correlation of charge and light signals
- Photon detection efficiency $\mathbf{g_1}$ and charge amplification $\mathbf{g_2}$
- Low energy calibration sources ³⁷Ar, ^{83m}Kr, ^{129m}Xe and ^{131m}Xe
- Reconstruction bias correction of O(1-2)%
- Calibration from 2.8 keV up to MeV region

```
Henning Schulze Eißing
```


drift pathSingle-site events

Universität

Münster

Detection efficiency

peaks as S1

Region of interest (ROI)

• Constructed to fully contain the WIMP recoil spectra

XENON

Detection and Selection Efficiencies

Data- and simulations driven with good agreement

Data quality selections to remove unphysical events

S1 and S2 peaks must have PMT hit patterns, top/bottom

Driven by 3-fold PMT coincidence requirement to identify

• cS1: 0-100 PE | cS2: $10^{2.1} - 10^{4.1}$ PE

Selection efficiency (~80% acceptance)

Phys. Rev. Lett. 131, 041003 (2023)

WIMP Signal Model

LXe NR response from calibrations 10^{4} Blinded region cS2 [PE] 10^{3} $-1000 \text{ GeV}/c^2$ 10^{3} $200 \text{ GeV}/c^2$ cS2 [PE] $50 \text{ GeV}/c^2$ $20 \text{ GeV}/c^2$ 40 keVNR 20 keV 30 keV 10 KeV $10 \text{ GeV}/c^2$ Normalized rate [a.u.] $6 \text{ GeV}/c^2$ 10^{2} WIMP 40 keVNR 10 keVNR 20 KeVNI 20 40 60 80 100 120 30 keVNF 0 cS1 [PE] 200 Get **Toy MCs** 10^{2} 10 GeV/c 20 60 80 0 40 100 10 20 30 40 50 60 70 80 0 Nuclear recoil energy $[keV_{NR}]$ cS1 [PE] Theoretical WIMP NR energy spectra arXiv:2406.13638

Henning Schulze Eißing

Limit on SD WIMP-nucleon Cross Section

Limit Setting

- Unbinned maximum likelihood
- Power constraint limits (PCL) to avoid spurious exclusion limits
- Only exclude the parameter space that the detector is sensitive to.
- Conservative choice at median of sensitivity band
- This needs to be discussed within the community

