

Vew

Light Dark Matter searches with a next generation Spherical Proportional Counter

Ioannis Manthos

University of Hamburg

on behalf of the NEWS-G collaboration

15th International Workshop on the Identification of Dark Matter 2024

8-12 July 2024, L`Aquila (Italy)

Landscape of Direct Dark Matter searches

Landscape of Direct Dark Matter searches

Landscape of Direct Dark Matter searches

The NEWS-G collaboration

Light DM searches with a novel gaseous detector, the spherical proportional counter

New Experiments with Spheres - Gas

- 11 institutes
- ~40 collaborators
- 6 countries
- 3 underground laboratories

Universität Hamburg der Forschung | der Lehre | der Bildung

Pacific Northwest

A R I S T O T L E UNIVERSITY OF THESSALONIKI

Boulby Underground Laboratory

The Spherical Proportional Counter

Electric field scales as $1/r^2$

Divided into "drift" and "amplification" regions

I. Giomataris and G. Charpak with the SPC prototype

The Spherical Proportional Counter

Electric field scales as $1/r^2$

Divided into "drift" and "amplification" regions

I. Giomataris and G. Charpak with the SPC prototype

Strengths of SPC

- Low capacitance Single e⁻ detection
- Maximum volume-to-surface ratio
- Flexibility in target gas and pressures
- Simple, few-channel read-out
- Fiducialisation
- Radiopure construction
- Bonus: Applications beyond DM (e.g. n-spectroscopy)

Pulse Shape Discrimination

Pulse Shape Discrimination

Light Dark Matter Detection - Kinematics

• Low-mass targets are favourable for light-DM detection by nuclear recoils

• Requirement for low energy thresholds to see recoil energy

First NEWS-G Detector - SEDINE

- First NEWS-G results in 2018: Ø60 cm prototype in LSM, France
- Ne:CH₄ (99.3%:0.7%) **9.6 kg day exposure**
- Strongest SI limit at time (2017) on 0.5 GeV candidate

Astropart.Phys. 97 (2018) 54-62

First NEWS-G Detector - SEDINE

- First NEWS-G results in 2018: Ø60 cm prototype in LSM, France
- Ne:CH₄ (99.3%:0.7%) 9.6 kg day exposure
- Strongest SI limit at time (2017) on 0.5 GeV candidate

Astropart.Phys. 97 (2018) 54-62

But where next?

Development in instrumentation, detector physics, and detector simulation were required for next generation of NEWS-G

Multianode read-out with the ACHINOS sensor

Single anode: Drift and Amplification fields are connected \rightarrow depends on anode radius

$$ec{E}=rac{V_1}{r^2}rac{r_cr_a}{r_c-r_a}\hat{r}pproxrac{V_1}{r^2}r_a$$

Challenge:

High voltage \rightarrow Discharges (sparking) on avalanche region Low field $\rightarrow e^{-}$ - ion recombination on drift region

Multianode read-out with the ACHINOS sensor

Single anode: Drift and Amplification fields are connected \rightarrow depends on anode radius

$$ec{E}=rac{V_1}{r^2}rac{r_cr_a}{r_c-r_a}\hat{r}pproxrac{V_1}{r^2}r_a$$

Challenge:

High voltage \rightarrow Discharges (sparking) on avalanche region Low field $\rightarrow e^{-}$ - ion recombination on drift region

Solution:

ACHINOS multi-anode sensor

ACHINOS multi-anode sensor

- Multiple anodes placed at equal radii
- Sensors with 5, 11, 33 anodes operated
- Decoupling drift and amplification fields
- ✓ Allows for increased target mass
- Individual anode read-out
- ✓ TPC-like capabilities

JINST 15 (2020) P11023, JINST 17 (2022) C08025, JINST 19 (2024) P01018

8

Radius [cm]

Multianode read-out with the ACHINOS sensor

Single anode: Drift and Amplification fields are connected \rightarrow depends on anode radius

$$ec{E}=rac{V_1}{r^2}rac{r_cr_a}{r_c-r_a}\hat{r}pproxrac{V_1}{r^2}r_a$$

Challenge:

High voltage \rightarrow Discharges (sparking) on avalanche reg Low field $\rightarrow e^{-}$ - ion recombination on drift region

Solution:

ACHINOS multi-anode sensor

ACHINOS multi-anode sensor

- Multiple anodes placed at equal radii
- Sensors with 5, 11, 33 anodes operated
- Decoupling drift and amplification fields
- ✓ Allows for increased target mass
- Individual anode read-out
- ✓ TPC-like capabilities

JINST 15 (2020) P11023, JINST 17 (2022) C08025, JINST 19 (2024) P01018

10

 10^{-2}

 10^{-3} 20

3D printed ACHINOS with DLC coating

80

60

100

120

×33

×

140

Radius [cm]

8

SPC simulation framework

SPC simulation framework for complete simulation of a detection setup

- GEANT4 for particle transport in a geometry and their interaction with materials
- FEM simulation (ANSYS, COMSOL) of electromagnetic fields
- Garfield++ for the generation, drift and multiplication of primary electrons and signal generation

SPC simulation framework

SPC simulation framework for complete simulation of a detection setup

- GEANT4 for particle transport in a geometry and their interaction with materials
- FEM simulation (ANSYS, COMSOL) of electromagnetic fields
- Garfield++ for the generation, drift and multiplication of primary electrons and signal generation

JINST 15 (2020) C06013

Simulation has advanced SPC R&D

- Early ACHINOS read out anodes in 2 groups (6 Far 5 Near)
- Experimentally observed amplitude dependence on source azimuthal position
- Investigated with simulation

5 Near Anodes

6 Far Anodes

SPC simulation framework

SPC simulation framework for complete simulation of a detection setup

- GEANT4 for particle transport in a geometry and their interaction with materials
- FEM simulation (ANSYS, COMSOL) of electromagnetic fields
- Garfield++ for the generation, drift and multiplication of primary electrons and signal generation

JINST 15 (2020) C06013

Simulation has advanced SPC R&D

- Early ACHINOS read out anodes in 2 groups (6 Far 5 Near)
- Experimentally observed amplitude dependence on source azimuthal position
- Investigated with simulation
- Signal higher on Near anode than Far: Electric field higher due to rod
- Effect corrected by increasing voltage applied on Far anodes
- Now standard practise for bias on 2-channels ACHINOS

5 Near Anodes

6 Far Anodes

Light Dark Matter Searches with the SPC in SNOLAB

- ø140 cm SPC 4N (99.99% pure) Aurubis copper
 - Electroplated internal layer
 - Low radioactivity shielding material
- Constructed and tested in LSM, France
- Commissioning data analysis finalising
- First physics run in SNOLAB in 2023
- \checkmark ~20 kg·days exposure with Ne:CH₄

JINST 18 (2023) 02, T02005

- Discriminating variable: time separation
- Surface/volume and coincidence discrimination

Light Dark Matter Searches with the SPC in SNOLAB

- ø140 cm SPC 4N (99.99% pure) Aurubis copper
 - Electroplated internal layer
 - Low radioactivity shielding material
- Constructed and tested in LSM, France
- Commissioning data analysis finalising
- First physics run in SNOLAB in 2023
- \checkmark ~20 kg·days exposure with Ne:CH₄

JINST 18 (2023) 02, T02005

Light Dark Matter Searches with the SPC in SNOLAB

- ø140 cm SPC 4N (99.99% pure) Aurubis copper
 - Electroplated internal layer
 - Low radioactivity shielding material
- Constructed and tested in LSM, France
- Commissioning data analysis finalising
- First physics run in SNOLAB in 2023
- \checkmark ~20 kg·days exposure with Ne:CH₄

Individual anode Read-out, 11 anodes ACHINOS

- Developed electronics and read-out to instrument all **11 anodes individually**
- Improved energy resolution, fiducialisation, track reconstruction, ...

Data (500 mbar Ar:CH₄ 2%)

Individual anode Read-out, 11 anodes ACHINOS

- Developed electronics and read-out to instrument all **11 anodes individually**
- Improved energy resolution, fiducialisation, track reconstruction, ...
- Simulation study of the effect of sensor mechanical deformations

Data (500 mbar Ar:CH₄ 2%)

Ø60 cm Ø140 cm NOSV Cu 99.99% Cu 500 μm EFCu Layer

SNOGLOBE

SEDINE

SNOGLOBE

Ø140 cm

99.99% Cu

SEDINE

Ø60 cm

NOSV Cu

DarkSPHERE in Boulby

²²²Rn ~3 Bq/m³ P. Scovell, DMUK 2019 μ ~4×10⁻⁸ /cm²/s NIMA 511 (2003) 347-353

Boulby Underground Laboratory 365r Neutron-induced Muon-induced Neutron Cosmic radiation attenuated Photon 000m $9 \times 10^{-5} (5) \ 1.3 \times 10^{-4} (0.4)$ 1100m_ $5 \times 10^{-3} (4)$ ← 250.0 cm → ≁150.0 cm Current Ø30cm R&D SPC

- Fully electroformed detector
- •EF deep-underground, in host laboratory
- •Contained in low-radioactivity water-based shielding, sufficient for background goal **0.01 event/keV/kg/day** in ROI

•Using **light-nuclei gases** for low-mass DM search (He:i-C₄H₁₀)

Keuper mar

Bunter Sandston

DarkSPHERE in Boulby

²²²Rn ~3 Bq/m³ P. Scovell, DMUK 2019 μ ~4×10⁻⁸ /cm²/s NIMA 511 (2003) 347-353

EFCu in Boulby

- ECuME project, SNOLAB, of Ø140cm detector + scale model in PNNL
- STFC (UK funding agency) funding for an ultra-pure EFCu facility underground in Boulby
- Currently under construction

Example electroforming bath at Pacific Northwest National Laboratory

Credit: E W Hoppe, PNNL

Potentiostatic electroforming Cu: suppresses contaminants

- (e.g. U, Th, K) through electrochemical properties
- Result: highly-pure copper
- Used to apply internal shield to S140 detector

NIMA 988 (2021) 164844

EFCu in Boulby

- ECuME project, SNOLAB, of Ø140cm detector + scale model in PNNL •
- STFC (UK funding agency) funding for an ultra-pure EFCu facility • underground in Boulby
- Currently under construction

Boulby EFCu

Example electroforming bath at Pacific Northwest National Laboratory

Credit: E W Hoppe, PNNL

Cu²⁺

U³⁺

Construction of bath underway

Used to apply internal shield to S140 detector

Further R&D on SPC instrumentation

- Current ACHINOS thought to be sufficient for S140
- To maintain same drift field in Ø3m DarkSPHERE, need larger ACHINOS moving towards a 60-anode ACHINOS with 1mm (or smaller) anodes
- Improved position resolution, TPC-like capabilities

10²

- 'Neutrino-floor' reaching potential in DM-nucleon SI interactions
- Ø30cm prototype in Boulby in a DarkSPHERE-like shield will have world-leading sensitivity

- 'Neutrino-floor' reaching potential in DM-nucleon SI interactions
- Ø30cm prototype in Boulby in a DarkSPHERE-like shield will have world-leading sensitivity
- World-leading potential in SD interactions through natural-abundance H and C isotopes

- Sensitivity to DM electron scattering through low threshold
- A 3m SPC has capability to test heavy exotic candidates

Neutron Spectroscopy with SPC

SPC as neutron spectrometer with N₂ gas

- **Background measurements** for rare-event searches
- Medical and industrial applications

NIMA 1049 (2023) 168124

Neutron energy reconstruction

- Risetime \rightarrow (n, α) (n,p) event separation
- Correcting for the energy of the interactions

Direct light Dark Matter searches with Spherical Proportional Counters

- Novel gaseous detector technology
- > Unique probe to light Dark Matter detection uncharted phase-space territories
- > Ongoing intense R&D on sensor development, radiopure detector construction
- DarkSPHERE project aims to detect (or exclude) light Dark Matter in the 0.05-10 GeV mass range, touching the neutrino fog!

• Back up slides

Ionisation Quenching Factor

low-mass targets are favourable for light-DM searches QF values in literature not precisely determined

2 measurement approaches in NEWS-G

Neutron scattering at TUNL .

TUNL:

Electron/Ion beam, COMIMAC, Grenoble .

Phys.Rev.D 105 (2022) 5 052004

Eur.Phys.J.C 82 (2022) 12 1114

Innovative approach using literature measurements

11-anode ACHINOS sensor – Two channels readout

Shockley–Ramo theorem

 instantaneous electric current induced by a charge moving in the vicinity of an electrode

$$i = -q \, \frac{\vec{E}_w \cdot \vec{v}}{V_w}$$

 Weighting fields produce negative pulses to the off-trigger channel

DarkSPHERE will be fully electroformed underground in Boulby

ECuME project, SNOLAB, of Ø140cm detector + scale model in PNNL STFC (UK funding agency) funding for an ultra-pure EFCu facility underground in Boulby Currently under construction

Individual ACHINOS channels readout Two channels readout limitations

Two channel readout cannot exploit detector potential

- Construction non-uniformities effect on
 - Field non-homogeneities
 - Limited resolution

Example: Thermal neutron peak detection on 5-anode channel

- 4-anodes present energy resolution ~20%
- 1-anode has different gain, with energy resolution ~7%

Evaluating sensor deformations

Simulation study

➢ Gmsh and Elmer to reproduce ACHINOS sensor

Deformations considered

- Radius (r_{α}) ±0.075mm (manufacturer tolerance)
- Wire length $(I_w) \pm 0.05$ mm (perceptible deformation)

➤ Correction by applying a different voltage to each anode

Performance of ACHINOS sensor – Individual readout

Response of the SPC to shared events on multiple anodes

- \succ ²¹⁰Po α source, pointing each individual anode
- Individual anode normalisation, using calibration data

Data (500 mbar Ar:CH4 2%)

JINST 19 (2024) P01018

Enhanced sensitivity through MIGDAL effect in nuclear scattering