A combined search for dark matter with COSINE-100 and ANAIS-112

Sophia Hollick on behalf of the COSINE-100 and ANAIS-112 IDM | 9 July 2024

Centro de Astropartículas y Física de Altas Energías Universidad Zaragoza

Direct Detection Community

- Much of the WIMP phase space has been explored and excluded
- DAMA appears in the excluded region for many experiments
- Note: No other experiment in this plot uses Nal(Tl) target material

3-year Annual Modulation Individual Results

- ANAIS-112 incompatible with DAMA at 2.6 σ in [1-6] keV and 3.3 σ in [2-6] keV
 - Recent updated 3-year results improve this ANAIS-112: PRD 103, 102005 (2021), (updated result 2024)
- COSINE-100 3-year dataset lacked statistics to exclude either case
 - Compatible with null and DAMA hypotheses

COSINE-100: PRD 106, 052005 2021

- Using published 3-year data for both experiments, a 3σ significance can be achieved
 - ANAIS and COSINE provide open access to 3-year counting rates and background models at the Dark Matter Data Center (<u>DMDC</u>)
- Combining data directly allows for:
 - Validation of analysis methodologies
 - Confirmation for compatibility of results
- Promote the open access of data within the community :)

Simple Combination

- Letting COSINE and ANAIS be, respectively, $A\pm\delta A$ and $B\pm\delta B$
- Perform χ^2 Minimization of Independent Experiment Results:

$$\frac{\frac{A}{\delta A^{2}} + \frac{B}{\delta B^{2}}}{\frac{1}{\delta A^{2}} + \frac{1}{\delta B^{2}}} \pm \sqrt{\frac{1}{\frac{1}{\delta A^{2}} + \frac{1}{\delta B^{2}}}}$$

- Assumes
 - Uncertainties are well understood
 - Results are free from systematics
 - Experiments are compatible

Steps for Combination – Residuals Method

- Confirm individual experiment results
- Compare fitting methodologies
 - Frequentist vs Bayesian
- Confirm data compatibility

Fit a Modulation to Combined Residual Rates

ANAIS-112's Background Model

J Amaré et al 2021 J. Phys.: Conf. Ser. 2156 012175

ANAIS data – Obtaining Residuals

 $R(t) = \sum_{i} \left[C^{i} + \sum_{j=1}^{8} A^{i}_{j} e^{-\lambda_{j} t} \right]$

- COSINE crystals fit with:
 - Constant term from long-lived backgrounds
 - Sum of exponential decays from short-lived radioisotopes

Component	Half life
²¹⁰ Pb	22.20 years
60 Co	5.27 years
$^{125}\mathrm{I}$	$59.4 \mathrm{~days}$
$^{121}\mathrm{Te}$	19.3 days
$^{121\mathrm{m}}\mathrm{Te}$	154 days
$^{123\mathrm{m}}\mathrm{Te}$	119.2 days
$^{125\mathrm{m}}\mathrm{Te}$	57.40 days
$^{127\mathrm{m}}\mathrm{Te}$	106 days
$^{3}\mathrm{H}$	12.32 years
¹⁰⁹ Cd	461.3 days
²² Na	2.60 years
113 Sn	$115.08 \mathrm{~days}$

*surface Pb210 treated separately with effective half-life = 33.8 +/- 8 years from continuous Rn222 contamination

COSINE-100 Background 2021

COSINE data – Obtaining Residuals

Combine Data and x² Fit

Preliminary Result

3-year Annual Modulation Combined Results

0.015 • Since no systematics DAMA/LIBRA **Residuals LS** found for the two Simple 0.010 MCMC experiments, can Modulation Amplitude (cpd/kg/keV) 3σ 2 σ combine 0.005 1σ 0.000 **Combined Amplitude** DAMA Energy ROI (dru) -- MCMC Exclusion Frequentist and -0.005 1-6 keV -0.0003 ± 0.0028 3.6σ **Bayesian methods** are compatible! -0.0102-6 keV 0.0023 ± 0.0029 2.6σ -0.015[1-6] keV [2-6] keV

6 years combined sensitivity

Combined 6 Years Modulation Sensitivity

*see previous two talks by Iván and SeungMok

Yale

Sophia Hollick

Palazzo dell'Emiciclo, Sala Ipogea

15:00 - 15:20

Expected sensitivity from

Summary

- COSINE-100 and ANAIS-112 are compatible NaI(TI) experiments
 - Separate treatment of experiment backgrounds allows for direct combination of residuals
 - Combined annual modulation search provides 3σ sensitivity to DAMA for 3-years data

 Combined 3-year analysis finds no modulation at 3.6σ in 1-6 keV and 2.6σ in 2-6 keV

 Expected 6-year combination to find no modulation at 4.5σ in 1-6 keV and 2.8σ in 2-6 keV

Thank you for your attention!

Yale

Acknowledgements

This work is supported by: the Institute for Basic Science (IBS) under project code IBS-R016-A1, NRF-2021R1A2C3010989, NRF-2021R1A2C1013761 and RS-2024-00356960, Republic of Korea; NSF Grants No. PHY-1913742, United States; STFC Grant ST/N000277/1 and ST/K001337/1, United Kingdom; Grant No. 2021/06743-1, 2022/12002-7 and 2022/13293-5 FAPESP, CAPES Finance Code 001, CNPq 304658/2023-5, Brazil. Additionally, this work has been financially supported by MCIN/AEI/10.13039/501100011033 under grant PID2022-138357NB-C21 and by the Gobierno of Aragón la Unión Europea GOBIERNO **DE ARAGON** Universidad Zaragoza **Center for** Wright Underground Physics aboratory

Backup

Pseudo Study

- Ensembles of 9 modulations are generated from bkgd models + Poissonian
 - 0.0
 ± 0.0025
 ± 0.005
 ± 0.0075
 ± 0.0105

Yale

- Bias = Fit Injected Signal
- Bias Error = Standard Deviation / sqrt(# of entries)

~1000 Experiments

Visual Respresentation of Bias Effect

Combined Modulation Sensitivity and Null Case Bias

Combined Modulation Sensitivity and DAMA Signal Case Bias

Yale

Liquid Scintillator Veto

- NaI(TI) detectors immersed in 2200 L active LAB liquid scintillator veto
 - Scintillator contained in acrylic vessel lined with reflector

Efficiency Differences

- ANAIS-112 suffers a dramatic efficiency drop below 1.4 keV
- COSINE-100 is able to maintain efficiencies of ~85% down to 1 keV

Alpha Spectra Crystals

 ANAIS 	Detector	Powder Name	Date of arrival at Canfranc
	D0, D1	<90 ppb K	December 2012
	D2 D3	WIMPScint-III WIMPScint-III	March 2015 March 2016
	D4, D5 D6 D7 D8	WIMPScint-III WIMPScint-III	November 2016 March 2017
	$\mathbf{D}0, \mathbf{D}1, \mathbf{D}0$	to man being m	

• COSINE

Crystal	Mass	Size	Powder	Exposure	Radioactivity
	(kg)	$(diameter \times length)$	Type	Time	cooling time at
		(inches)		(years)	Y2L (years)
Crystal-1	8.3	5.0×7.0	AS-B	2.17	3
Crystal-2	9.2	4.2×11.0	AS-C	0.92	2.75
Crystal-3	9.2	4.2×11.0	AS-WSII	>0.92	1.2
Crystal-4	18.0	5.0×15.3	AS-WSII	1.83	0.5
Crystal-6	12.5	4.8×11.8	AS-WSIII	0.5	0.6
Crystal-7	12.5	4.8×11.8	AS-WSIII	0.5	0.6

Component	Half life
²¹⁰ Pb	22.20 years
$^{60}\mathrm{Co}$	5.27 years
$^{125}\mathrm{I}$	$59.4 \mathrm{~days}$
$^{121}\mathrm{Te}$	$19.3 \mathrm{~days}$
$^{121\mathrm{m}}\mathrm{Te}$	$154 \mathrm{~days}$
$^{123\mathrm{m}}\mathrm{Te}$	$119.2 \mathrm{~days}$
$^{125\mathrm{m}}\mathrm{Te}$	57.40 days
$^{127\mathrm{m}}\mathrm{Te}$	106 days
$^{3}\mathrm{H}$	12.32 years
$^{109}\mathrm{Cd}$	$461.3 \mathrm{~days}$
22 Na	2.60 years
113 Sn	115.08 days

The COSINE-100U

Y2L, Yangyang, South Korea \rightarrow YemiLab, Jeongseon, South Korea

