JAMSTE

DMICA: exploring Dark Matter in natural muscovite MICA

Shigenobu Hirose

Collaboration with: Natsue Abe¹ Qing Chang¹, Takeshi Hanyu¹, Noriko Hasebe², Yasushi Hoshino³, Takashi Kamiyama⁴, Yoji Kawamura¹, Kohta Murase⁵, Tatsuhiro Naka⁶, Kenji Oguni¹, Katsuhiko Suzuki¹, Seiko Yamasaki⁷ (JAMSTEC¹, Kanazawa U², Kanagawa U³, Hokkaido U⁴, Penn State⁵, Toho U⁶, AIST⁷)

Japan Agency for Marine-Earth Science and Technology (JAMSTEC)

Scientific focus: exploring "past-Gyr" DM events

 Conducting a galactic-wide DM survey

 Small target mass can achieve large exposure due to long age (e.g., 1 mg x 1 Gyr = 1 ton-year)

https://www.danspapers.com/2022/05/olivine-beach-replenishment-questions/

Muscovite mica is well-established as a solid state track detector in geology

Muscovite mica KAI₃Si₃O₁₀(OH)₂

• Cleavage at a potassium layer allows easy access to the crystal's interior.

Samples are prepared as 2 cm² and 0.3 mm thick in our experiments.

Natural radiation tracks (crystal defects) in mica

- α recoil tracks are most common.

"Latent" tracks intersecting a cleavage plane are revealed as pits through chemical etching

Pits of radiation tracks appearing on the etched mica surface

Phase contrast microscopic photograph of *induced* alpha-recoil and fission tracks on the etched surface of mica (Hashimoto et al. 1980)

		Zrecoil	Vrecoil / C	dE/dx GeVcm ² g ⁻¹	pit c U
	fission track	~38 and ~52	0.031~ 0.046	~25 electronic stopping	~
	a-recoil track	82 ~ 90	0.0013	~15 nuclear stopping	0.0 0.

Comparison of natural radiation tracks (from Price & Salamon 1986 with modifications)

Using the "cleave-and-etch method", can we readout DM nuclear recoil tracks as well if they exist in mica?

What pit can we expect for DM nuclear recoil tracks?

	Zrecoil	V _{recoil} / C	dE/dx GeVcm ² g ⁻¹	pit c
fission track	~38 and ~52	0.031~ 0.046	~25 electronic stopping	~
alpha recoil track	82 ~ 90	0.0013	~15 nuclear stopping	0.0
DM recoil track	8 ~ 19 (K, Al, Si, O)	~ 0.001	~O(1) nuclear stopping	

• Fast neutrons (~ MeV) mimic DM nuclear recoil (, which means they are genuine backgrounds).

Neutron (pseudo DM) recoil pits are shallower but observable

neutron-recoil track pits (neutron-irradiated mica after annealing)

Surface topography optained by optical profiler (preliminary results)

alpha-recoil track pits (natural mica)

-2.0 nm -4.0 -6.0 -8.0 -10.0 -12.0 -14.0 -16.0 -18.0 -20.0

Cleave-and-etch method reveals tracks crossing cleavage plane

- Target volume: V ~ S * L/2 (L: track length = O(10)nm, S: surface area)
- To increase the target volume, more surface area needs to be scanned.

Pioneering DM search using muscovite mica by Snowden-Ifft et al. 1995

Pioneering DM search using muscovite mica by Snowden-Ifft et al. 1995 (SI95)

VOLUME 74, NUMBER 21

PHYSICAL REVIEW LETTERS

Limits on Dark Matter Using Ancient Mica

D. P. Snowden-Ifft,* E. S. Freeman, and P. B. Price* Physics Department, University of California at Berkeley, Berkeley, California 94720 (Received 20 September 1994)

The combination of the track etching method and atomic force microscopy allows us to search for weakly interacting massive particles (WIMPs) in our Galaxy. A survey of 80720 μ m² of 0.5 Gyr old muscovite mica found no evidence of WIMP-recoil tracks. This enables us to set limits on WIMPs which are about an order of magnitude weaker than the best spin-dependent WIMP limits. Unlike other detectors, however, the mica method is, at present, not background limited. We argue that a background may not appear until we have pushed our current limits down by several orders of magnitude.

PACS numbers: 95.35.+d, 14.80.Ly, 29.40.Ym, 61.72.Ff

 \bullet time, with an exposure of just 1e-6 ton-year, 22 May 1995

FIG. 4. Exclusion curves for each of the main constituent nuclei of mica. For a given mass, WIMPs with cross sections above these curves are ruled out at the 90% confidence level.

They set one of the strictest limits on WIMPs cross section at that

Identified in the pit-depth histogram ROI free from a-recoil pits

SI95 found that the summed pit depth histogram showed null for a-recoil pits but a peak for n-recoil pits in the smallest (40-64Aa) bins.

Limits on dark matter from 80,720um² mica surface scan by atomic force microscopy (AFM)

↓ null result in ROI

FIG. 4. Exclusion curves for each of the main constituent nuclei of mica. For a given mass, WIMPs with cross sections above these curves are ruled out at the 90% confidence level.

Snowden-Ifft et al. 1995

DMICA revisits Snowden-Ifft et al. 1995 with an efficient method of scanning mica, aiming at an exposure of 1 ton-year

Optical profiler scans mica much faster than AFM

Preliminary test has processed mica surface of 524,765 um²

DMICA: 524,765 um²

Snowden-Ifft et al. 1995: 80,720 um²

Comparison of DMICA with Snowden-Ifft et al. 1995

	Snowden-Ifft et al. 1995	DMICA
Exposure (Scan area)	1e-6 ton-year (80,000 um²)	1 ton-year (800 cm²)
Readout (Scan speed)	Atomic Force Microscopy (0.3 s/um²)	Optical profiler (0.0001 s/um ²)
Nominal scan time	10 hours	92 days
Backgrounds in ROI	no background	radiogenic fast neutrons

Projected sensitivity for 1 ton-yr exposure with 0.5Gyr time-integration and 800cm² scan

predicted pit depth histogram based on a pit-creation model (Snowden-Ifft and Chan 1995) 90% C.L. exclusion curve

 $\left(\frac{m_{\chi}}{\text{GeV}}\right) < 10^{26} \left(\frac{Mt}{1\text{ton}\cdot\text{yr}}\right) \left(\frac{A/V}{(10\text{nm})^{-1}}\right)$

Summary

- DMICA explores DM nuclear recoil events in natural mica.
 scientific focus: exploring "past-Gyr" DM events, or conducting a
 - scientific focus: exploring "p galactic-wide DM survey
 - sensitive to ultra-heavy DM due to large surface-to-volume ratio of the target
- DMICA uses an optical profiler instead of AFM for rapid scanning of mica, enabling a 1 ton-year exposure, a 6-order-of-magnitude jump from the previous study, in a practical time.
- DMICA is still in the R&D phase, but pleliminary test has demonstrated reproducing SI95 with 6.5 times larger exposure.
 - Obtaining samples with a low concentration of radiative impurities is crucial for the production phase.

