

15th International Workshop on the Identification of Dark Matter 2024

DarkSide-20k sensitivity to light dark matter particles

Marie van Uffelen (vanuffelen@cppm.in2p3.fr) Aix-Marseille Univ, CNRS/IN2P3, CPPM, Marseille, France

On behalf of the DarkSide-20k collaboration

Institut Physique de l'Univers Aix+Marseille Université

The DarkSide-20k experiment 1/2

13.5 m

 $\mathbf{0}$

B

•.5 m

 Currently under construction → Should start data taking in 2027

> TPC: 50 t Underground argon (UAr)

Inner veto: 32 t UAr

Outer veto: 650 t Atmospheric argon

See talk by I. Ahmad for more details on DarkSide-20k

Photo-electronics $2x10.5 \text{ m}^2 \text{ SiPMs}$ arrays

See poster by A. Marasciulli

The DarkSide-20k experiment 2/2

The DarkSide-20k experiment 2/2

From DarkSide-50 to DarkSide-20k

3

<u>Phys.Rev.D 107</u> (2023) 6, 063001

From DarkSide-50 to DarkSide-20k

3

Phys.Rev.Lett. 130 (2023), 101001

Phys.Rev.Lett. 130 (2023), 101002

Pile up

- Expect 80 Hz from β , X and γ backgrounds
- Select isolated S2, with other S2 occurring at times greater than one maximum drift time (3.7 ms)

51% of effective livetime

Fiducialization

Radial: 30 cm fiducialization from the walls Drift direction: no fiducialization 69% of signal acceptance

Exposure = 17.4 ton.year

DS-20k inner detector

for 1 year of data taking

⁵ DarkSide-20k low mass background model

- Uniformly distributed in the fiducial volume
- Include recent calculations of β-decay energy spectra

Phys.Rev.A 90 (2014) 012501

Phys.Rev.C 102 (2020) 065501

 Include shape systematics (atomic exchanges, screening effect, Q-value)

³⁹Ar dominant for $N_e \geq 4$

6 DarkSide-20k low mass background model

- Simulated with a GEANT-4 based simulation tool
- $\approx 2.5 \text{x}$ reduced bkg contamination per surface area wrt DS-50

DarkSide-20k low mass background model

- Observed in DS-50
- Origin might be trapped electrons by impurities and released later
- For DS20k: **Extrapolation** from DS-50 data

Spurious electron (SE) background

SE 18x lower than ${}^{39}\text{Ar}$ at $N_{\rho} = 4$

2 fit scenarii:

- Conservative (almost indep. of SE modelling): Fit from $N_{\rho} = 4$
- (DS-50 strategy)
- **Ultimate**: Fit from $N_e = 2$ assuming good control of rate and spectral shape of SE in DS-20k

⁽⁸⁾ DarkSide-20k low mass background model

- Mostly from solar neutrinos (⁷Be, ¹⁵O, pep, ⁸B, hep)
- Include radiative corrections in $CE\nu NS$

JHEP 05, 271

Include accurate parametrization of the nucleus structure

> Phys.Rev.D 102 (2020) <u>015030</u>

Assuming Standard Halo Model and recommended conventions

Eur. Phys. J. C 81 <u>(2021), p. 907</u>

Localised at low N_e

e
S2 SiPMs
oing
ations

Main bkg components and **ER** ionization yield \rightarrow Dominant systematic **uncertainties &** constrained by the fit

DarkSide-20k sensitivity to low mass WIMPs 90% C.L. limits

Assuming 1 year of data taking

- More than one order of magnitude of uncharted theory parameter space will be probed
- Stable against detector model assumptions

DarkSide-20k will lead the low mass WIMP search below $m_{\gamma} \approx 5 \text{ GeV}/c^2$ after only one year of data collection

Assuming 1 year of data taking

- Migdal effect = possible atomic effect
- Electron released in NR
 - Lower the detection threshold
- → With Migdal effect: best limits from 40 MeV/c² to 5 GeV/c²
- Expect > 1 order of magnitude improvement wrt to current experiments in **1y** only

Including Migdal effect

- DS-20k 1 year $QF - N_e - \geq 2$
- DS-20k 1 year
- ER Migdal $N_e \ge 2$
- DS-20k 1 year $QF - N_e - \ge 4$
- DS-20k 1 year ER Migdal $N_e \ge 4$
- DS-50 QF 2023
- LZ 2023
- PandaX-4T 2023
- XENONnT 2023
- PandaX-4T 2023
- XENON1T 2021
- Cresst-III 2019
- XENON1T ME 2019
 - Excluded region

Light dark matter (LDM)

electrons

- LDM = Sub GeV fermion or scalar boson

Elastic scatter of Light Dark Matter (LDM) off bound

Expect > 1 order of magnitude improvement wrt to current experiments in **1y** only

Mediator can be light ($\rightarrow F \sim 1/q^2$) or heavy ($\rightarrow F \sim 1$)

ALP and dark photon (DP)

Absorption of ALP/DP by bound electrons \rightarrow mono-energetic signal

- ALP = pseudo scalar particle
- Coupling ALP electrons $\rightarrow g_{Ae}$

Expect ≈**5**x improvement wrt to current experiments in **1**y only

- DP = vector boson particle
- Kinetic mixing between DP and SM photons \rightarrow strength κ

- electrons

Best direct limits (1 year) but phase space already rejected by NuSTAR indirect measurements

Conclusions

- First assessment of DarkSide-20k sensitivity to low mass dark matter particles
- Further strengthens the physics reach of DarkSide-20k with a leading role below 5 GeV/c^2
- Expect to probe > 1 order to magnitude of un-charted theory parameter space within 1 year only for a variety of dark matter particles
- For WIMPs:
 - Probe $\sigma_{SI} < 10^{-42} \text{ cm}^2$ above $m_{\gamma} = 800 \text{ MeV/c}^2$
 - Reach the neutrino fog at 5 GeV/c² after 10 years

arXiv: <u>2407.05813</u> Nature Communications)

OF - 2023

(18)

Thank you!

(19)

Back up

LAr response model

DarkSide-50 calibration

21

ER ionization yield

Phys.Rev.D 104 (2021), 082005

LAr response model

Quenching fluctuations -> no theoretical predictions

NQ model:

Visible energy fixed to its average value. Not physical but conservative.

QF model:

binomial quenching fluctuations between detectable and undetectable energy : ensures that the number of produced quanta does not exceed the maximum possible one

+ other fluctuations in recombination

process

(nb of electron-ion pair that recombine) and repartition between excitation and ionization quanta

⁽²²⁾ Spurious electron background

- **Extrapolated** from DarkSide-50 data
- **DS20k rate** = DS50 rate scaled with bkg rate and max. drift time

DS20k shape (in Ne): takes into account expected

Later

single electron resolution (SER) and electron lifetime

PMTs / SiPMs

Time dependency

- (ΔT) with the previous
- highly ionizing event
- (the parent)
- ΔT measured to be 3
- exponentials (1
- uncorrelated
- component, 1 fast, 1

- of parent drift time
- Up to **a few electrons** / SE event
- Mean number of SE following a parent depends linearly on the parent drift time

PMTs / SiPMs

Sensitivity vs exposure

Sensitivity vs argon level

No quenching fluctuations in NR

90% C.L. limits

Prospective experiments

	DS-20k - 1 year QF - N _e - ≥ 2
••••	DS-20k - 1 year QF - N _e - ≥ 4
	$DS-LM - QF - Ne \ge 4$
	DS-50 QF 2023
	PandaX-4T 2023
	XENONnT 2023
	PandaX-4T 2023
	LUX 2021
	XENON1T 2021
	Pico-60 2019
	CDMSlite 2018
	LUX 2017
	CDEX-50 - proj.
	DAMIC-1K - proj.
	NEWS-G DarkSPHERE - proj.
	SuperCDMS Ge HV- proj.
	LZ - 3 yr - proj. (HM)
	XENONnT - 5 yr - proj. (HM)
	CDMS 2013
	Cogent 2013
	DAMA/LIBRA 2008
	Excluded region
	LAr Neutrino fog n=2

(27) Other signal models

Rates

 e^{-} in a given orbital (n, l)

$\frac{dR}{d \ln E_{er}} = N_T \frac{\rho_{DM}}{m_{\chi}} \times \frac{\bar{\sigma}_e}{8\mu_{\chi e}^2} \times \sum_{nl} \int |f_{ion}^{nl}(k',q)|^2 |F_{DM}(q)|^2 \eta(v_{min}) q dq$

ALPs:

LDM:

$$R = N_T \frac{\rho_{DM}}{m_A} \times \frac{3m_A^2 g_{Ae}^2}{16\pi\alpha m_e^2} \sigma_{pe}(m_A c^2)c$$

DP:

$$R = N_T \frac{\rho_{DM}}{m_{A'}} \times \kappa^2 \sigma_{pe}(m_{A'}c^2)c$$

Sterile neutrinos:

 $\frac{dR}{dE_{er}} = N_T \frac{\rho_{DM}}{m_{\nu}} \times \sum_{nl} 2(2l+1) \int \frac{d\sigma_{nl}}{dE_{er}} \left(v, m_{\nu}, |U_{e4}|^2\right) f(v) \ v \ dv$

