
Status of the Quantum 
Sensors for the Hidden 

Sector (QSHS) Experiment

Mitchell G Perry, The University of Sheffield, for the 
Quantum Sensors for the Hidden Sector Collaboration

IDM 2024, L’Aquila Italy, 8-12 July 2024



The Strong CP Problem
Conservation of Charge-Parity (CP) in the strong interaction is unexpected. 
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ℒ𝐶𝐶𝐶𝐶𝐶𝐶(𝑄𝑄𝐶𝐶𝑄𝑄) =
Φ + arg det |𝑀𝑀|  

32𝜋𝜋2
𝐸𝐸𝑄𝑄𝐶𝐶𝑄𝑄.𝐵𝐵𝑄𝑄𝐶𝐶𝑄𝑄 ≈ �̅�𝜃 ⋅ 10−16 𝑒𝑒 cm neutron

A well-known example of conservation of strong CP is the neutron Electric Dipole 
Moment (EDM):

• The current experimental limits on 𝑑𝑑  give 10−26𝑒𝑒 cm therefore �̅�𝜃 < 10−10

• Either it is coincidentally small, or the CP violating effects must add up to zero, 
driving the minimisation of �̅�𝜃 = (Φ + arg det |𝑀𝑀|)
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Moment (EDM):

• The current experimental limits on 𝑑𝑑  give 10−26𝑒𝑒 cm therefore �̅�𝜃 < 10−10

• Either it is coincidentally small, or the CP violating effects must add up to zero, 
driving the minimisation of �̅�𝜃 = (Φ + arg det |𝑀𝑀|)

• The Peccei-Quinn (PQ) mechanism adds an additional QCD Lagrangian term 
that turns �̅�𝜃 into a dynamic variable.

• This naturally minimises �̅�𝜃 and solves the ‘Strong CP’ problem.

• The PQ mechanism produces Axions – are these DM candidates?

+
2𝑒𝑒
3

−
1𝑒𝑒
3

−
1𝑒𝑒
3

𝑢𝑢 𝑑𝑑

𝑑𝑑

~1.5 fm

neutron

𝑚𝑚𝑎𝑎𝑓𝑓𝑎𝑎~𝑚𝑚𝜋𝜋𝑓𝑓𝜋𝜋

𝑚𝑚𝑎𝑎 = 5.70 𝜇𝜇𝑒𝑒𝜇𝜇
1012 GeV 

𝑓𝑓𝑎𝑎



Why is Axion DM Wave Like
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Axion DM can be described to a very good approximation by a classical pseudoscalar field in the same way that 
photons can be approximated as an EM field.

If the local halo density 𝜌𝜌𝐻𝐻 = ~0.45 GeV cm−3 
And the virial velocity in the local halo is 230 kms−1 

Assume: 1) Axions have a mass that provides a good fraction of the closure density, i.e. all DM is axions
 2) 𝑚𝑚𝑎𝑎𝑐𝑐2 = 4 μeV

• High number density of 1014 axions per cm3

• Long Wavelength - This gives us de-Broglie wavelength of about 400 m.
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 2) 𝑚𝑚𝑎𝑎𝑐𝑐2 = 4 μeV

• High number density of 1014 axions per cm3

• Long Wavelength - This gives us de-Broglie wavelength of about 400 m.

• This could be a useful characterisation when it comes to their 
detection.

• Method of detection is the reverse Primakoff effect.

• Axions are very light, may be detectable by conversion to RF/UHF 
photons in a cryogenically cooled resonant cavity.

• Photon signal at the yocto-watt (10-24 W) level 

Virtual photon

Inverse Primakoff effect in a static 
Magnetic field 𝑔𝑔𝑎𝑎𝑎𝑎𝑎𝑎~10−15GeV−1

Axion DM can be described to a very good approximation by a classical pseudoscalar field in the same way that 
photons can be approximated as an EM field.



Axion Resonant Detectors

6

https://pdg.lbl.gov/2020/review
s/rpp2020-rev-axions.pdf

Location of 5 GHz



Axion Resonant Detectors

Cavity and Static 
Magnetic Field 𝐵𝐵

Data 
Acquisition

Room 
Temperature

System 𝑇𝑇S

𝜇𝜇
𝑇𝑇S = 𝑇𝑇Phys + 𝑇𝑇N
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Axion Resonant Detectors

Data 
Acquisition

Room 
Temperature

System 𝑇𝑇S

𝜇𝜇
𝑇𝑇S = 𝑇𝑇Phys + 𝑇𝑇N

• SQUIDS
• Josephson Parametric Amplifiers & Travelling Wave Parametric Amplifiers
• Bolometers
• Qubits

SNR ∝
𝐵𝐵2𝜇𝜇
𝑇𝑇S

Scan Rate ∝
𝐵𝐵4𝜇𝜇2𝑄𝑄𝐿𝐿
𝑇𝑇S2
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Cavity and Static 
Magnetic Field 𝐵𝐵

https://pdg.lbl.gov/2020/review
s/rpp2020-rev-axions.pdf

Location of 5 GHz

• The huge improvement in SNR and scan-rate over the last few decades is due 
to the improvement in system noise 𝑇𝑇S. 

• Significant further improvements in 𝑇𝑇S needs to be made to help create a 
tractable scan through the frequencies available to resonant detectors.



QSHS Test Facility – Science 

Science Goals
• Test of ultra-low-noise electronics 

developed by the collaboration

• Tests of tuneable resonator hardware

• Science from a search of QCD axions 
(~5 GHz ≈ 20 μeV)

• Test of active resonant feedback. 

I won’t discuss this here but see: E.J. Daw, 
Resonant feedback for axion and hidden 
sector dark matter searches, Nucl. Instrum. 
Meth. A 921 (2019) 50 [arXiv:1805.11523].
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QSHS Test Facility

An STFC funded facility to be located in Sheffield, UK
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• We have a MOU with ADMX

• 10 mK target temperature

• At least a 8 T magnetic Field

• 20 cm bore by 20 cm high
DF Lab DF Aux Lab – Compressors, 

pumps, benches, etc

• A Dilution Fridge (DF) and 8 T Superconducting magnet are on order – delivery expected in 12-14 months

• Refurbishment of lab space about to commence.



QSHS Test Facility
An STFC funded facility located in 
Sheffield, UK
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• We have a MOU with ADMX

• 8.5 mK base temperature

• 8 T magnetic Field (6 T currently)

• 180 mm bore by 200 mm high DF Lab

Plant Room – Compressors, 
pumps, etc.

• Dilution Fridge now installed, 
thermometry calibration and 
cavity support installation 
underway. Auxiliary 

Lab
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QSHS Test Facility

Cavities go here

1st stage 
amp here.



Quantum Electronics for QSHS 1
Parametric Amplifiers

Josephson Parametric Amplifiers
Travelling Wave Parametric Amplifiers
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SLUG loaded (SQUID) Amplifiers

High frequency RF amplifiers
Nb

Si

Calculated frequency-dependent gain of a SLUG amplifier. The signal is input 
to the SLUG via a λ/4 transmission line resonator with characteristic 
impedance Z0 = 2 Ω and bare resonant frequency fres = 8 GHz.

CMD29 (Manchester, Aug. 2022) – Developing a SLUG Microwave 
Amplifier for Axion Detection 



Quantum Electronics for QSHS 2
Bolometers

• At ~10 mK, noise equivalent powers (NEP’s) of <  10−21 WHz−1/2 should be possible.
• Will permit a broad-range search over the cavities resonant bandwidths 
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Qubits

Qubit

Resonator

Readout Port 

Layers

Substrate

Control Port  

• Fabricated a test device with qubits and resonators
• Built and measured a waveguide sample holder
• Demonstrated feasibility of multiplexed readout with waveguide architecture



Summary
• The QSHS collaboration is building a world-class programme in this area over eight 

institutions

• A new UK based facility furthering in development that will search for axions via the 
resonant cavity method. 

• A dilution fridge has been installed.

• Development of quantum devices is taking place to improve scan rate and detection of 
very faint signals:
o Amplifiers
o Qubits
o Bolometers

• Collaboration with US colleagues (ADMX) on resonators.

• The long-term goal is a large-scale UK facility.
15
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