

MADMAX

Jacob Egge University of Hamburg

On behalf of the MADMAX Collaboration

MADMAX

Magnetized Disk and Mirror Axion Experiment

- Tunable dielectric haloscope
- Sensitive to dark matter axions or dark photons
- Detector volume independent of frequency
- Signal amplification for larger axion masses [40-400 μeV] predicted by post-inflationary scenario^1

$$g_{a\gamma} \approx 2 \cdot 10^{-14} \,\text{GeV}^{-1} \left(\frac{0.3 \,\text{GeV}/\text{cm}^3}{\rho_a} \right)^{1/2} \left(\frac{10^5}{\beta^2} \right)^{1/2} \left(\frac{1 \,\text{m}^2}{A} \right)^{1/2} \left(\frac{T_{sys}}{8 \,\text{K}} \right)^{1/2} \left(\frac{10 \,\text{T}}{B_e} \right) \left(\frac{1.3 \,\text{d}}{\tau} \right)^{1/4} \left(\frac{SNR}{5} \right)^{1/2} \left(\frac{m_a}{100 \,\mu\text{eV}} \right)^{5/4} \left(\frac{10 \,\text{m}^2}{100 \,\mu\text{eV}} \right)^{1/2} \left(\frac{10 \,\text{m}^2}{100 \,\mu\text$$

¹Nat. Com. 13 (2022) 1, 1049

08.07.2024

Working principle

- Boost signal by resonance between dielectric disks
- Tune distance between disks
- In cavity terms: Low quality factor (QL) but wavelength independent form factor (C)

Final design with A~1m² disks and β^2 ~10⁵: • V~ $\lambda^3 x \ 10^5$ [@20 GHz]

Prototype Program

Closed Boosters (CB): $\emptyset = 100 \text{ mm}$ (CB100), 3 Al₂O₃ disks $\emptyset = 200 \text{ mm}$ (CB200), 3 Al₂O₃ disks

Aim:

- Easy to simulate
- Learn how to control unwanted modes
- Understand receiver chain in B-field

Open Boosters (OB): $\emptyset = 200 \text{ mm} (OB200), 1 \text{ Al}_2O_3 \text{ disks}$ $\emptyset = 300 \text{ mm} (OB300), 3 \text{ disks} (Al O$

Aim:

- Tunability, motor control @cryo and B-field
- $\emptyset = 300 \text{ mm} (\text{OB300}), 3 \text{ disks} (Al_2O_3 \& \text{LaAlO}_3) \cdot \text{MADMAX proof-of-concept}$

Large bore (\emptyset = 760 mm) cryostat allows operation of all prototypes Fits into the 1600 mm warm bore of MORPURGO magnet at CERN

Goal:

- Many large disks
- Strong magnetic field
- QCD axion sensitivity

Jacob Egge

Open Booster

08.07.2024

Jacob Egge

Booster Electromagnetics

- Set up a simple three disk open booster
- Fixed distances
- Study electromagnetics with bead-pull method

08.07.2024

Boost factor determination

- Measure the electric field
- Calculate boost factor from measurement

Dark photon search

Dark photon search

- No signals of unknown origin
- Sensitive to dark photon signals ${\sim}10^{\text{-}21}\,\text{W}$
- Compute 95% CI upper limit
- Convert to limit on kinematic mixing angle

$$\begin{split} \chi &= 1.43 \times 10^{-13} \left(\frac{400}{\beta^2}\right)^{1/2} \left(\frac{707 \,\mathrm{cm}^2}{A}\right)^{1/2} \left(\frac{T_{sys}}{290 \,\mathrm{K}}\right)^{1/2} \\ & \left(\frac{11.7 \,\mathrm{d}}{\Delta t}\right)^{1/4} \left(\frac{SNR}{5}\right)^{1/2} \left(\frac{0.3 \,\mathrm{GeV/cm}^3}{\rho_{\mathrm{DM}}}\right)^{1/2} \end{split}$$

Exclusion limit

- Assume unpolarized dark photons
- Improve existing limits by ~3 orders of magnitude at peak sensitivity
- Resonant and broadband at the same time

Search for axion-like particles

- Feb/Mar 2024: Search for axion-like particles in Morpurgo magnet at CERN (~1.5 T)
- Closed Boosters: Smaller but more resonant setups
- Frequency tuning by manually changing distances

Search for axion-like particles

- 5 different frequency ranges with ${\sim}10MHz$ with CB200 at RT
- Additional one frequency range at cryogenic temperature below 10K (CB100)
- Analysis ongoing
- Expected sensitivity to unexplored ALP parameter range with peak sensitivity $g_{a\gamma} \lesssim 3x10^{-11} GeV^{-1}$

What's next

- Tunability
- Up to N=20 disks
- Scaling of $\beta^{_2}$

- Prototype cryostat
- T_{sys}~8K

- Dipole magnet
- 1.35 m warm bore
- B~10 T

$$g_{a\gamma} \approx 2 \cdot 10^{-14} \,\text{GeV}^{-1} \left(\frac{0.3 \,\text{GeV}/\text{cm}^3}{\rho_a}\right)^{1/2} \left(\frac{10^5}{\beta^2}\right)^{1/2} \left(\frac{1 \,\text{m}^2}{A}\right)^{1/2} \left(\frac{T_{sys}}{8 \,\text{K}}\right)^{1/2} \left(\frac{10 \,\text{T}}{B_e}\right) \left(\frac{1.3 \,\text{d}}{\tau}\right)^{1/4} \left(\frac{SNR}{5}\right)^{1/2} \left(\frac{m_a}{100 \,\text{\mueV}}\right)^{5/4} \left(\frac{10 \,\text{m}^2}{100 \,\text{\mueV}}\right)^{1/2} \left(\frac{10 \,\text{m}^2}{100 \,\text{\mueV}}\right)^{1/2} \left(\frac{10 \,\text{m}^2}{100 \,\text{\mueV}}\right)^{1/2} \left(\frac{10 \,\text{m}^2}{100 \,\text{\mueV}}\right)^{1/2} \left(\frac{10 \,\text{m}^2}{100 \,\text{m}^2}\right)^{1/2} \left(\frac{10 \,\text{m}^2}{100$$

Tunability

- Piezo electric motors to move disks at cryogenic temperatures and magnetic field
- Interferometer for displacement measurement
- Motor tested at 4.2K & 5.4 T $\,$
- Work according to specifications¹⁾

¹⁾JINST 18 P08011

Cryostat

- Prototype cryostat close to delivery
- Can house current and future prototypes (Ø~800 mm)
- $T_{phys} \sim 4K$
- Fits into Morpurgo magnet

Magnet

- Dipole magnet most critical item for full-size MADMAX
- Design for 9 T large bore well advanced
- Novel conductor design studied and feasible¹
- Conductor design: demonstrated quench protection
- Next step: build demonstrator coils to verify performance
- Budget for first demonstrator coil secured!

1 C. Lorin et. al IEEE Transactions on Applied Superconductivity vol. 33 Issue 7 (2023) 1-11

08.07.2024

Thank you

