#### **LIDA:** First results and future prospects

Joscha Heinze (speaker),

Artemiy Dmitriev, Alex Gill, Jiri Smetana, Tiangliang Yan, Vincent Boyer, and Denis Martynov



#### Laser-Interferometric **D**etector for **A**xions: First results and future prospects

Joscha Heinze (speaker),

Artemiy Dmitriev, Alex Gill, Jiri Smetana, Tiangliang Yan, Vincent Boyer, and Denis Martynov















Θ

GRAVITATIONAL



• Directly detect axions and axion-like particles  $(10^{-16} - 10^{-8} \text{ eV})$ .





- Directly detect axions and axion-like particles  $(10^{-16} 10^{-8} \text{ eV})$ .
- Use coupling of **axions to photons**:

$$\mathcal{L} = \frac{g_{a\gamma}}{4} a F_{\mu\nu} \tilde{F}^{\mu\nu}$$

Lagrangian  $\mathcal{L}$ a: axion field  $g_{a\gamma}$ : coupling coefficient F: electromagnetic fieldstrength tensor



 $\sim$ 



- Directly detect axions and axion-like particles  $(10^{-16} 10^{-8} \text{ eV})$ .
- Use coupling of **axions to photons**:

$$\mathcal{L} = \frac{g_{a\gamma}}{4} a F_{\mu\nu} \tilde{F}^{\mu\nu} \qquad \Box$$

Lagrangian  $\mathcal{L}$ a: axion field  $g_{a\gamma}$ : coupling coefficient F: electromagnetic fieldstrength tensor

$$\frac{\partial^2 \boldsymbol{E}}{\partial t^2} - \nabla^2 \boldsymbol{E} = g_{a\gamma} \dot{a} (\nabla \times \boldsymbol{E})$$

wave equation for electric field  ${\it E}$ 

 $\sim$ 



UNIVERSITY<sup>OF</sup> GRAVITATIONAL BIRMINGHAM WAVE ASTRONOMY



- Directly detect axions and axion-like particles  $(10^{-16} 10^{-8} \text{ eV})$ .
- Use coupling of **axions to photons**:

$$\mathcal{L} = \frac{g_{a\gamma}}{4} a F_{\mu\nu} \tilde{F}^{\mu\nu} \qquad \Longrightarrow \qquad \frac{\partial^2 \mathbf{E}}{\partial t^2} - \nabla^2 \mathbf{E} = g_{a\gamma} \dot{a} (\nabla \times \mathbf{E}) \qquad \Longrightarrow \qquad \Delta \phi = g_{a\gamma} [a(t) - a(t - \tau)]$$

phase difference  $\Delta\phi$  between leftand right-handed circular polarisation

Lagrangian  $\mathcal{L}$ a: axion field  $g_{a\gamma}$ : coupling coefficient F: electromagnetic fieldstrength tensor wave equation for electric field **E** 



UNIVERSITY<sup>OF</sup> | GRAVITATIONAL BIRMINGHAM | WAVE ASTRONOMY



- Directly detect axions and axion-like particles  $(10^{-16} 10^{-8} \text{ eV})$ .
- Use coupling of **axions to photons**:



































### Detector design

BIRMINGHAM

WAVE ASTRONOMY





Tabletop demonstration:

- 200 kW intra-cavity power to enhance signal
- 5 m baseline to increase interaction time
- vacuum system
- <u>6 months</u> integration time for larger signal-to-noise ratio
- squeezed light to reduce quantum noise by up to 10 dB



#### **Status and first results**

-----

UNIVERSITYOF BIRMINGHAM

 F
 GRAVITATIONAL

 I
 WAVE ASTRONOMY

21

 $M_{h}$ 

### LIDA in the lab



𝞯 5 m long vacuum system!





UNIVERSITY<sup>OF</sup> GRAVITATIONAL BIRMINGHAM WAVE ASTRONOMY

## LIDA in the lab



𝞯 5 m long vacuum system!

𝞯 Input and readout setup!





Readout

UNIVERSITY<sup>OF</sup>

GRAVITATIONAL WAVE ASTRONOMY

## LIDA in the lab



𝞯 5 m long vacuum system!

𝞯 Input and readout setup!



Readout

UNIVERSITYOF

BIRMINGHAM

GRAVITATIONAL WAVE ASTRONOMY



#### 1<sup>st</sup> science run



|                    | First run |
|--------------------|-----------|
| Input pump power   | 12 W      |
| Intra-cavity power | 118 kW    |
| Measurement time   | 85 h      |
| Squeezing level    | _         |
| Detuning           | 478 kHz   |

Peak sensitivity:  $1.51 \times 10^{-10} \, \text{GeV}^{-1}$ 

Avg sensitivity:  $3.2 \times 10^{-10}\,\text{GeV}^{-1}$ 





Ē



#### **Prospects for LIDA**



Θ

GRAVITATIONAL

26

M





UNIVERSITYOF

BIRMINGHAM

GRAVITATIONAL

WAVE ASTRONOMY



























UNIVERSITYOF GRAVITATIONAL 33 BIRMINGHAM WAVE ASTRONOMY





UNIVERSITY<sup>OF</sup> GRAVITATIONAL BIRMINGHAM WAVE ASTRONOMY







UNIVERSITY<sup>OF</sup> GRAVITATIONAL BIRMINGHAM WAVE ASTRONOMY





WAVE ASTRONOMY

BIRMINGHAM











### **Proposal for GEO600**



GRAVITATIONAL WAVE ASTRONOMY

39

M

#### $GEO600 \rightarrow DarkGEO$





GEO600: close to Hanover, Germany (credit: geo600.org)



 Published: J Heinze, et. al., NJP 26 (2024)

 UNIVERSITYOF

 GRAVITATIONAL

 BIRMINGHAM

### DarkGEO prospects



|                | First LIDA | Next LIDA | DarkGEO |
|----------------|------------|-----------|---------|
| Power (kW)     | 118        | 200       | 10,000  |
| Meas time      | 85 h       | 6 months  | 1 year  |
| Squeezing (dB) | -          | 10 dB     | 10 dB   |
| Detuning       | 478 kHz    | 0 kHz     | 0 kHz   |

GRAVITATIONAL

WAVE ASTRONOMY

Published: J Heinze, et. al., NJP 26 (2024)

٦)

**UNIVERSITY**OF

BIRMINGHAM



Summary



- LIDA is a laser-interferometric detector for axions sensitive to a rotation of linear polarisation!
- First science run yielded very promising results, paper submitted!
- Prospects to even probe unexplored regions in the next observing run at lower axion masses!
- **Challenge** to reduce detuning shows first success!
- DarkGEO could further boost the sensitivity by
   ∧ several orders of magnitude, paper in preparation!





UNIVERSITY<sup>OF</sup> | GRAVITATIONAL BIRMINGHAM | WAVE ASTRONOMY

### More detailed setup





# High-power effects





At high circulating power:

If disturbed, the cavity often changes "state" correlating with

- a reduction in circulating power,
- a distortion of the transmitted field,
- higher readout noise.



#### $GEO600 \rightarrow DarkGEO$





GEO600: close to Hanover, Germany (credit: geo600.org)

| Cavity roundtrip length                          | 1.2             | $\mathbf{km}$          |
|--------------------------------------------------|-----------------|------------------------|
| Input coupler transmissivity, $T_{\rm in}$       | 20              | ppm                    |
| Output coupler transmissivity, $T_{\rm out}$     | 1               | ppm                    |
| Cavity roundtrip loss, $l_{\rm rt}$              | 20              | ppm                    |
| Laser input power                                | 210             | W                      |
| Intra-cavity power, $P_{m,cav}$                  | 10              | $\mathbf{M}\mathbf{W}$ |
| Measurement time, $T_{\text{meas}}$              | 1               | year                   |
| Main laser field polarisation                    | vertical        |                        |
| Signal field polarisation                        | horizontal      |                        |
| Parameter (DarkGEO-II/III)                       | Value           | Unit                   |
| Wavelength                                       | 1064            | nm                     |
| Cavity roundtrip length                          | 1.2             | $\mathbf{km}$          |
| Input coupler transmissivity, $T_{m,in}$         | 45              | ppm                    |
| Output coupler transmissivity, $T_{m,out}$       | 1               | $\mathbf{ppb}$         |
| Input coupler transmissivity, $T_{\rm sig,in}$   | 3000            | ppm                    |
| Output coupler transmissivity, $T_{\rm sig,out}$ | 2.5             | ppm                    |
| Cavity roundtrip loss, $l_{\rm rt}$              | 45              | ppm                    |
| Laser input power                                | 460             | W                      |
| Intra-cavity power, $P_{m,cav}$                  | 10              | $\mathbf{MW}$          |
| Effective squeezing level                        | 10              | $^{\mathrm{dB}}$       |
| Measurement time, $T_{\text{meas}}$              | 1               | year                   |
| Detuning, $\beta$                                | 0.13  (scanned) |                        |
| Main laser field polarisation                    | vertical        |                        |
| Signal field polarisation                        | horizontal      |                        |

Value

1064

Unit

 $\mathbf{nm}$ 

Parameter (DarkGEO-I)

Wavelength



UNIVERSITY<sup>OF</sup> GRAVITATIONAL BIRMINGHAM WAVE ASTRONOMY

Published: J Heinze, et. al., arXiv:2401.11907 (2024)