

Università degli Studi di Padova



# HyperLSW – Experimental Setups for Determining the Amount of Axion Dark Matter After a Discovery

Sebastian Hoof

with J. Jaeckel & G. Lucente [arXiv:2407.04772]

IDM 2024, L'Aquila 10 July 2024



O msca axitools

- Is it a QCD axion? Is it the only form of dark matter (DM)?
- Can measure  $m_a$ , but degeneracy in  $\rho_a g_{a\gamma\gamma}^2$  remains

- Is it a QCD axion? Is it the only form of dark matter (DM)?
- Can measure  $m_a$ , but degeneracy in  $\rho_a g_{a\gamma\gamma}^2$  remains
- ▶ In general: follow-up experiments are needed!
- → Determine "worst-case value" for  $g_{a\gamma\gamma}$ , use known  $m_a$  to construct LSW setup with alternating magnet orientations

## Light-shining-through-a-wall (LSW) experiments



- LSW experiments<sup>Anselm '85, van Bibber+ '87</sup> generate and detect axions via strong magnetic fields
- Works for non-DM axions, great experimental control; but signal scales with g<sup>4</sup><sub>aγγ</sub>

Conversion probability for a single magnet,

$$p_{a\leftrightarrow\gamma}^2 = \frac{\omega^2}{\omega^2 - m_a^2} \left(\frac{g_{a\gamma\gamma}B\ell}{2}\right)^4 |F|^4,$$

crucially depends on the form factor F:

$$|F| = \left| \frac{\sin(x)}{x} \right|$$
 and  $x \equiv \frac{q \ell}{2} \approx \frac{m_a^2 \ell}{4\omega}$ 

 The signal can be boosted by a factor β ~ 10<sup>5</sup> by inserting two mirrors on each side (optical cavity/resonator)

$${\cal S}\equiv {m arepsilon}_{
m eff} \, {P_\omega \, \tau\over \omega} \, eta^2 \, p_{a\leftrightarrow\gamma}^2$$



Make LSW experiments longer to reach the QCD axion band?



Make LSW experiments longer to reach the QCD axion band?

Not really, incoherent conversion at lower masses ( $x \sim \pi/2$ )



Boosting the signal with mirrors leads to resonant mode



- Boosting the signal with mirrors leads to resonant mode
- Large aperture a avoids clipping losses, which reduce β
- Can compute an optimal total length *L* for e.g.  $\beta \sim 10^5$ :

$$L/2 \sim 94 \,\mathrm{km} \left(\frac{1064 \,\mathrm{nm}}{\lambda}\right) \left(\frac{a}{1.3 \,\mathrm{m}}\right)^2$$

LSW = straight line: curvature of Earth becomes relevant!

## **Multi-magnet LSW**



- Now: ng groups of magnets with alternating polarity<sup>van Bibber+ '87</sup>
- $n_s$  magnets in each group, gaps of size  $\Delta$  between magnets
- Alternating B-field polarity = resonant conversion

• With  $y \equiv x (1 + \Delta/\ell)$ , the form factor becomes<sup>Arias+'10</sup>

$$F = \frac{\sin(x)}{n_{\rm g} n_{\rm s} x} \frac{\tan(n_{\rm s} y)}{\sin(y)} \begin{cases} \sin(n_{\rm s} n_{\rm g} y) & \text{if } n_{\rm g} \text{ is even} \\ \cos(n_{\rm s} n_{\rm g} y) & \text{if } n_{\rm g} \text{ is odd} \end{cases},$$

Resonant peaks at<sup>Arias+ '10</sup>

$$x_k(1+\Delta/\ell)pprox rac{\left(1+2k
ight)\pi}{2n_{ extsf{s}}} \quad ext{for } k\in\mathbb{N}_0$$

• Global maximum for k = 0: try to match this to  $m_a$ !

| Setup    | $B~[{\rm T}]$ | $a \ [m]$                               | $\ell \ [m]$ | $\Delta_{\min}~[m]$ | $P_{\lambda}$ [W] | $\beta_{ m g}$                              | $\beta_{ m r}$                              | $\lambda \; [\mathrm{nm}]$ | $\varepsilon_{ m eff}$ | $\tau~[{\rm h}]$                          | $b \; [\mathrm{s}^{-1}]$ | $2z_{ m opt}$ [km]                                       |
|----------|---------------|-----------------------------------------|--------------|---------------------|-------------------|---------------------------------------------|---------------------------------------------|----------------------------|------------------------|-------------------------------------------|--------------------------|----------------------------------------------------------|
| S1<br>S2 | 9<br>11       | $\begin{array}{c} 1.3\\ 1.8\end{array}$ | 4.0<br>10.0  | $2.0 \\ 3.0$        | $\frac{3}{3}$     | $\begin{array}{c} 10^5 \\ 10^5 \end{array}$ | $\begin{array}{c} 10^5 \\ 10^5 \end{array}$ | $1064 \\ 1064$             | $0.9 \\ 0.9$           | $\begin{array}{c} 100 \\ 100 \end{array}$ | $10^{-4}$<br>$10^{-4}$   | $\begin{array}{c} 2\times 94 \\ 2\times 181 \end{array}$ |
| 01<br>02 | 9<br>11       | $1.3 \\ 1.8$                            | 4.0<br>10.0  | $2.0 \\ 3.0$        | 300<br>300        | $\frac{10^5}{10^5}$                         | $\frac{10^6}{10^6}$                         | $1064 \\ 1064$             | 0.9<br>0.9             | 5000<br>5000                              | $10^{-6} \\ 10^{-6}$     | $\begin{array}{c} 2\times79\\ 2\times152 \end{array}$    |

■ Magnets ≈ MADMAX, <sup>J. Egge (Mon)</sup> optics ≈ ALPS II<sup>Ch. Schwemmbauer (Tue)</sup>

| Setup    | B [T]   | $a  [\mathrm{m}]$ | $\ell \ [m]$                              | $\Delta_{\min}~[m]$ | $P_{\lambda}$ [W] | $\beta_{ m g}$                              | $\beta_{ m r}$      | $\lambda \; [\mathrm{nm}]$                  | $\varepsilon_{ m eff}$ | $\tau$ [h]                                | $b~[\mathrm{s}^{-1}]$ | $2  z_{ m opt}   [ m km]$                                |
|----------|---------|-------------------|-------------------------------------------|---------------------|-------------------|---------------------------------------------|---------------------|---------------------------------------------|------------------------|-------------------------------------------|-----------------------|----------------------------------------------------------|
| S1<br>S2 | 9<br>11 | $1.3 \\ 1.8$      | 4.0<br>10.0                               | $2.0 \\ 3.0$        | 3<br>3            | $\frac{10^5}{10^5}$                         | $\frac{10^5}{10^5}$ | $1064 \\ 1064$                              | $0.9 \\ 0.9$           | $\begin{array}{c} 100 \\ 100 \end{array}$ | $10^{-4} \\ 10^{-4}$  | $\begin{array}{c} 2\times 94 \\ 2\times 181 \end{array}$ |
| 01<br>02 | 9<br>11 | $1.3 \\ 1.8$      | $\begin{array}{c} 4.0\\ 10.0 \end{array}$ | $2.0 \\ 3.0$        | 300<br>300        | $\begin{array}{c} 10^5 \\ 10^5 \end{array}$ | $\frac{10^6}{10^6}$ | $\begin{array}{c} 1064 \\ 1064 \end{array}$ | 0.9<br>0.9             | $5000 \\ 5000$                            | $10^{-6} \\ 10^{-6}$  | $\begin{array}{c} 2\times79\\ 2\times152 \end{array}$    |

■ Magnets ≈ MADMAX, <sup>J. Egge (Mon)</sup> optics ≈ ALPS II<sup>Ch. Schwemmbauer (Tue)</sup>

- Start from optimal length, then adjust  $n_{g}$ ,  $n_{s}$ , and  $\Delta$
- Can we use a gas filling? Difficult: high losses, technical issues for very long setups; adjust *ℓ* instead

Know  $m_a \Rightarrow$  arrange magnets to be resonant at that  $m_a$ 



Know  $m_a \Rightarrow$  arrange magnets to be resonant at that  $m_a$ 



Know  $m_a \Rightarrow$  arrange magnets to be resonant at that  $m_a$ 



Look at the combined reach for different setups:



Low  $m_a$  : all *B*-fields are aligned



High  $m_a$ : fully alternating *B*-fields, adjust magnet length



10

Intermediate  $m_a$ : increase  $n_g$  as  $m_a$  increases<sup>see [2407.04772]</sup>



#### **Optimal parameter choices**



- We provide optimised setups for any mass<sup>2407.04772</sup>
- The lowest  $g_{a\gamma\gamma}$  values require  $\sim 15\,000$  magnets

## Maximal HyperLSW reach

Goal: measure  $g_{a\gamma\gamma}$  within 2%. Maximal reach of HyperLSW benchmarks vs haloscopes<sup>many contribs @ IDM</sup> and cosmic string sims



12

#### Haloscope mass determination



Can measure  $m_a$  precisely  $(\Delta m_a/m_a \sim 10^{-8})^{
m O'Hare~\&~Green~`17}$ 

#### **Potential issues**

 Challenging for m<sub>a</sub> 2 meV. We considered random magnet placement and *B*-field profile errors with Monte Carlo simulations, haloscope mass resolution

#### **Potential issues**

- Challenging for m<sub>a</sub> 2 meV. We considered random magnet placement and *B*-field profile errors with Monte Carlo simulations, haloscope mass resolution
- Expensive. Costs driven by tunneling, magnets: estimates for worst-case benchmarks: 10–1000 billion EUR. Cost can go down drastically for larger g<sub>aγγ</sub>.

#### **Potential issues**

- Challenging for m<sub>a</sub> 2 meV. We considered random magnet placement and *B*-field profile errors with Monte Carlo simulations, haloscope mass resolution
- Expensive. Costs driven by tunneling, magnets: estimates for worst-case benchmarks: 10–1000 billion EUR. Cost can go down drastically for larger g<sub>aγγ</sub>.
- Other uses. Re-use magnets, infrastructure for other physics experiments (axions, GWs, ...), non-physics uses ("Hyperloop" transport network, ...)
- ➤ See our preprint for more details<sup>2407.04772</sup>

#### Examples for complementarity with other probes



IAXO<sup>J. Vogel (Mon)</sup> can measure  $m_a$  &  $g_{a\gamma\gamma}$  with sufficient energy resolution<sup>Dafni+ '19</sup>; could also determine  $g_{aee}$ 

## Examples for complementarity with other probes

Axion-photon coupling  $\log_{10} \left( |g_a \gamma \gamma| / \operatorname{GeV}^{-1} \right)$ 

-10

-12

-14

-16

-10



IAXO<sup>J. Vogel (Mon)</sup> can measure  $m_a$  &  $g_{a\gamma\gamma}$  with sufficient energy resolution<sup>Dafni+ '19</sup>; could also determine  $g_{aee}$ 

Know  $m_a$  = know  $f_a$  for QCD axions! Can we learn something about the PQ symmetry breaking scenario?<sup>1810.07192</sup>

Axion mass  $\log_{10} (m_{a,0}/\text{eV})$ 

CAMBIT 131

-2

1.0

0.8

0.6

0.2

Relative probability P/P<sub>1</sub>

#### Summary

- Axion DM can be discovered any day! What then?
- Magnets with large aperture and knowledge of m<sub>a</sub> allow us to build HyperLSW
- "No lose" theorem: establish that axions = (most of) DM
- HyperLSW is expensive and challenging, but doesn't require new technology!
- Complementarity with e.g. helisocopes, help to identify UV model? Re-use of components and infrastructure in physics or civil applications?

## **Bonus Slides**

#### Current limits on the axion-photon coupling



#### Axion dark matter – realignment mechanism

• At early times,  $T \gg T_{\chi} \sim T_{QCD,c} = 158.1(5) \text{ MeV},^{2002.02821}$  the axion field *a* can fluctuate freely



#### Axion dark matter – realignment mechanism

- At early times,  $T \gg T_{\chi} \sim T_{\text{QCD,c}} = 158.1(5) \text{ MeV}$ ,<sup>2002.02821</sup> the axion field *a* can fluctuate freely
- Later times, T ≪ T<sub>χ</sub>: periodic potential develops, a oscillates around the minimum



#### Axion dark matter – realignment mechanism

- At early times,  $T \gg T_{\chi} \sim T_{\text{QCD,c}} = 158.1(5) \text{ MeV}$ ,<sup>2002.02821</sup> the axion field *a* can fluctuate freely
- Later times, T ≪ T<sub>χ</sub>: periodic potential develops, a oscillates around the minimum
- ► Strong CP problem solved dynamically by promoting  $\theta \mapsto a/f_a$
- Oscillating scalar field behaves as DM



Axion = pNGB from U(1) symmetry breaking (PQ symmetry)

#### Pre-inflationary PQ breaking

- Universe = single patch of constant θ stretched out by inflation
- Initial axion field value is random <sup>(C)</sup>
- Inflation dilutes away topological defects <sup>(2)</sup>

Axion = pNGB from U(1) symmetry breaking (PQ symmetry)

#### Pre-inflationary PQ breaking

- Universe = single patch of constant θ stretched out by inflation
- Initial axion field value is random <sup>(2)</sup>
- Inflation dilutes away topological defects (2)

#### Post-inflationary PQ breaking

- Universe = huge number of causally disconnected axion field patches
- Axion DM density from realignment = average (\*)
- Contribution from top. defects, very difficult to compute<sup>(2)2007.04990, 2108.05368</sup>

## **QCD** axion properties

QCD axion mass from chiral perturbation theory<sup>1812.01008</sup>

$$m_a = 5.69(5)\,\mu\text{eV}\left(\frac{10^{12}\,\text{GeV}}{f_a}\right)$$

 Axion-photon coupling depends on UV model through anomaly ratio E/N and axion-meson mixing<sup>1511.02867</sup>

$$g_{a\gamma\gamma} = rac{lpha_{\mathsf{EM}}}{2\pi f_a} \left[ rac{E}{N} - 1.92(4) 
ight] \propto m_a$$

Axion-like particles (ALPs): no connection to QCD = less predictable; however, e.g. mass spectra in string theory<sup>2103.06812</sup>

## The KSVZ model band

Distribution of all equally probable, preferred reps for KSVZ models<sup>2107.12378</sup> (finite due to LP criterion) = theory prior on  $|g_{a\gamma\gamma}|$ 



#### **Caveats: substructures**



Can exclude non-constant  $\rho_a$  with multi-year obs<sup>O'Hare & Green '17</sup>

### Shorten magnets to fine-tune sensitivity



#### Possible cost savings

#### Detecting an axion with high couplings can reduce costs:



#### Monte Carlo simulations: positioning errors

Effects of random, absolute positioning uncertainties:



#### Monte Carlo simulations: B-field profiles

Effects of random *B*-field profile shifts and length fluctuations:

