Searching for Dark Sector Particles in the NEON Experiment at a Reactor Facility

On behalf of the NEON Collaboration

15th International Workshop on the Identification of Dark Matter 08 Jul. 2024

Experimental Site

- Hanbit-6 reactor in Yeonggwang, Korea
- 2.8 GW thermal power
- Reactor core
 - Diameter: 3.1 m
 - Height: 3.8 m
 - Distance from reactor core: 23.7 m
- ~ 20 m.w.e overburden

NEON Detector Configuration

- Target: Nal(TI) crystals
- Active veto system: ~ 800 L liquid scintillator (LAB-based LS)
- Shield design
 - 10 cm lead
 - 3 cm borated polyethylene
 - 20 cm high-density polyethylene

NEON Detector Configuration

- 6 Nal(TI) crystal detectors, 16.7 kg
- Upgraded detector encapsulation design after engineering run
- Light yield about ~ 24 NPE/keV is stably obtained
 - High light yield compared to other Nal(Tl) experiments (COSINE-100: ~ 15 NPE/keV)

Operation

- Operation since Apr. 11, 2022
 - + $\sim 92\%$ of DAQ efficiency
 - Largest exposure (~ 10000 kg · day) among reactor CEvNS experiments
 - Reactor-on data: ~ 523 days
 - Reactor-off data: ~ 144 days
- Data used for analysis: until Jun. 22, 2023

Experiment	Detector	Mass	Threshold	Reactor/ source	Distance to source	Thermal	Neutrino flux v/cm ² /s	Location
COHERENT	HERENT Csl. Ar. Ge, Nal 15-185 kg 6.5-20 keVnr		πDAR	19-28 m		4.3*107	USA	
nuESS*	Csl, Ge, Xe, Ar			πDAR				Sweden
CICENNS*	Csl(Na)	300 kg	2 keVnr	πDAR	10.5 m		2*10 ⁷	China
Atucha-II	Si CCDs	2.5 g	40 eVee	Atucha-II	12 m	2 GWth	2*10 ¹³	Argentina
BULLKID*	Si/Ge cryogenic	20 g	160 eV					Italy
CONNIE	Si CCDs	0.5 g	15 eVee	Angra-II	30 m	3.9 GW _{th}	7.8*10 ¹²	Brazil
CONUS	HPGe	3.74 kg	210 eVee	Brokdorf	17 m	3.9 GW _{th}	2*10 ¹³	Germany
CONUS+	HPGe	3.74 kg	150 eVee	Leibstadt	20.7 m	3.6 GWth	1.45*10 ¹³	Switzerland
MINER*	Ge, Si, Al ₂ O ₃ cryogenic	1 kg	100 eVnr	TRIGA / HFIR*	2-10 m	1 MWth	~1*1012	USA
NCC-1701	HPGe	3 kg	200 eVee	Dresden-II	8 m	2.96 GW _{th}	8.1*10 ¹³	USA
NEON	Nal(TI)	16.7 kg	200 eVee	Hanbit	23.7 m	2.815 GWth	~1*1013	Korea
NEWS-G3*	Ar+2%CH4			tbc				Canada
NUCLEUS*	CaWO ₄ , Al ₂ O ₃ cryogenic	10 g	20 eVnr	Chooz	77 m, 102 m	2x2.45 GWth	1.7*10 ¹²	France
NUXE*	LXe	10 kg		tbc				
nuGEN	HPGe	1.4 kg	200 eVee	Kalinin	11-12 m	3.1 GWth	5.4*10 ¹³	Russia
RED-100	LXe, Lar*	200 kg		Kalinin	19 m	3.1 GWth	1.35*10 ¹³	Russia
RECODE*	HPGe	1-2,10 kg	160 eVee	Sanmen	11, 22 m	3.4 GWth	Up to 5.6*10 ¹³	China
RELICS*	LXe	50 kg	1 keVnr	Sanmen	22 m	3.4 GW _{th}	1.4*10 ¹³	China
Ricochet*	Ge, Zn, Al, Sn cryogenic	680 g	160 eVee, 300 eVnr	ILL-H7	8.8 m	58 MW _{th}	1.6*10 ¹²	France
SBC*	Ar	10 kg	100 eVee	tbc				USA
TEXONO	HPGe	1.43 kg	200 eVee	Kuo-Sheng	28 m	2.9 GWth	6.4*10 ¹²	Taiwan

Aula Magna, XXXI International Conference on Neutrino Physics and Astrophysics

2024IDM_NEON

• Intensive γ source

- ~ 10²⁶ /keV/day γ flux in 2.8 GW_{th} reactor core, peaking around energy 1 MeV
- Strong γ source compared to other experiments
- γ can couple to dark sector bosonic particles
 - Axion-like particles (ALPs)
 - Dark photon (DP)

Dark Sector Particles in NEON

Detection of ALP

2024IDM_NEON

Dark Sector Particles in NEON

Detection of DP

- Assumed $m_{A'} = 3m_{\chi}$
- Search for signal induced by dark matter (DM) scattering off electrons in the detector

Background Modeling for ALP Search

- 3 ~ 3000 keV range of background modeling to understand the detector behavior
- GEANT4 based Monte Carlo simulation was performed
 - Internal backgrounds
 - Surface contaminant
 - Cosmogenic activation
 - External backgrounds

Background Modeling for ALP Search

- (reactor-on) (reactor-off) data used in analysis
- Peaks from cosmogenic activation
 + time-dependent component (?)

Seasonal Variations in NEON Data

- ²²²Rn contamination possible through
 - Opened calibration hole
 - Dust contamination in LS •

Radon concentration variations at the Yangyang underground laboratory, Front. Phys. (2022)

2021/12/31

Seasonal Variations in NEON Data

Seasonal Variations in NEON Data

ALP Search in NEON

ALP Signal Fitting

- No signal observed
 - 95 % C.L. upper limit $(g_{av} > 9.72 \times 10^{-8} \text{ GeV}^{-1} \text{ at } m_a = 1 \text{ MeV/c}^2)$

PDF CDF

0.15

g_{ay} [GeV⁻¹]

0.2

ALP Search in NEON

Limits for ALP Signal

- ALP signal generated and simulated in ALP mass range 1 eV/c² \sim 10 MeV/c²
- Exclusion of cosmological triangle!

2024IDM_NEON

ALP Search in NEON

Limits for ALP Signal

Axion-electron coupling

arXiv:2406.06117

Dark Photon Search in NEON

Fitting for Light Dark Matter

- χ^2 fit to (reactor-on) (reactor-off) data of background component
- No observation of the signal
 - 90 % C.L. upper limit: σ_e = 3.17 × 10⁻³⁵ cm² at m_{χ} = 100 keV/c²

2024IDM_NEON

Dark Photon Search in NEON

Limits for Light Dark Matter

- DM signal generated in DM mass 1 keV/c² ~ 1 MeV/c²
- 90% C.L. upper limit
- $m_{A'} = 3m_{\chi}$

Summary

- NEON is stably on operation since Apr. 2022, with ~ 10000 kg • day exposure
- Good understanding of our data & background modeling
- NEON experiment search for dark sector particles
 - In ALP search, we covered the unexplored "cosmological triangle" for the first time (arXiv:2406.06117)
 - In DP search, we extend limit for low mass region (article in progress)

Backup

Crystal Encapsulation

- Encapsulation with quartz window between crystal and PMT
 → without quartz window
- LY ~ 24 NPE/keV

Used Data

arXiv:2406.06117

Detector	Mass	reactor-on data	reactor-off data
detector-1	1.67 kg	165.4 kg·days	201.2 kg·days
detector-2	3.34 kg	413.4 kg·days	352.3 kg·days
detector-3	1.67 kg	-	-
detector-4	3.34 kg	527.9 kg∙days	367.6 kg∙days
detector-5	3.35 kg	160.2 kg∙days	279.8 kg·days
detector-6	3.35 kg	329.4 kg·days	266.0 kg·days
Total	16.72 kg	1596.3 kg·days	1466.9 kg·days

Blue: reactor-on Green: reactor-off

- Data used in ALP search, for each crystal
- D3 excluded because of the noise contamination

Event Selection for Low Energy Events

- Boosted decision tree (BDT)-based selection
- BDT training sample prepared with waveform simulation
- Noise separation down to ~ 0.6 keV

Background Modeling for NEON

			⁴⁰ K		²¹⁰ Pb	²³² Th	²³⁸ U	
Crystal	Mass (kg)	Size (inch, $D \times L$)	nat K (ppb)	α Rate (mBq/kg)	²¹⁰ Pb (mBq/kg)	²¹⁶ Ρο (μBq/kg)	²¹⁸ Po (µBq/kg)	Light yield (NPE/k
NEO-1	1.62	3 × 4	50 ± 20	2.16 ± 0.02	1.89 ± 0.26	1.6 ± 0.7	10.6 ± 4.2	20.5 ± 0.9
NEO-2	1.67	3×4	137 ± 28	7.78 ± 0.03	7.46 ± 0.73	< 59.8	< 57.2	19.3 ± 0.9
NEO-3	1.67	3×4	46 ± 20	0.56 ± 0.01	0.53 ± 0.13	< 3.6	< 11.2	21.8 ± 0.9
NEO-4	3.35	3 × 8	22 ± 11	0.76 ± 0.01	0.69 ± 0.18	1.6 ± 0.8	< 3.3	22.4 ± 1.0
NEO-5	3.35	3 × 8	< 29	0.76 ± 0.01	0.68 ± 0.17	1.6 ± 0.5	2.9 ± 1.6	21.8 ± 0.9
NEO-6	1.65	3×4	< 38	0.94 ± 0.01	0.88 ± 0.21	5.8 ± 1.3	11.0 ± 3.3	21.7 ± 1.0
COSINE-100(C6)	12.5	4.8 × 11.8	17 ± 3	1.52 ± 0.04	1.46 ± 0.07	2.5 ± 0.8	< 0.25	14.6 ± 1.5

EPJC (203) 83:226

 Measured components from NEO crystals

 Cosmogenic components studied on COSINE-100 experiment

Astropart. Phys. (2020) 115:102390

Signal Generation for LDM

Atomic Ionization Factor

- To consider energy transfer of bound electron to become outgoing electron
- Ionization factor calculated in 0 ~ 10 keV (PRD (2023) 108:083030)

2024IDM_NEON