

Searches for Axions and ALPs with the International Axion Observatory (IAXO) and (Baby)IAXO

Julia K. Vogel on behalf of the IAXO Collaboration July 9, 2024 IDM 2024, L'Aquila, Italy

What is an axion (in a nutshell)?

Strong CP problem

CP violation expected in QCD, but not observed experimentally (θ , nEDM)

Peccei-Quinn solution

New global U(1) symmetry, $\boldsymbol{\theta}$ turn into a dynamical variable, relaxes to zero

Axion

Pseudo Goldstone-Boson of spontaneous symmetry breaking of PQ at yet unknown scale $\rm f_a$

Properties of this potential DM candidate

- Extremely weakly-coupled fundamental pseudo-scalar
- Generic coupling to two photons
- Mass unknown $m_a \propto g_{a\gamma}$,
- Astrophysics: $g_{a\gamma} < 10^{-10} \text{ GeV}^{-1}$
- \rightarrow Dark matter candidate

What is an axion (in a nutshell)?

Strong CP problem

CP violation expected in QCD, but not observed experimentally (θ , nEDM)

Peccei-Quinn solution

New global U(1) symmetry, $\boldsymbol{\theta}$ turn into a dynamical variable, relaxes to zero

Axion

Pseudo Goldstone-Boson of spontaneous symmetry breaking of PQ at yet unknown scale $\rm f_a$

Properties of this potential DM candidate

- Extremely weakly-coupled fundamental pseudo-scalar
- Generic coupling to two photons
- Mass unknown $m_a \propto g_{a\gamma}$,
- Astrophysics: $g_{a\gamma} < 10^{-10} \text{ GeV}^{-1}$
- \rightarrow Dark matter candidate

What is an axion (in a nutshell)?

Strong CP problem

CP violation expected in QCD, but not observed experimentally (θ , nEDM)

Peccei-Quinn solution

New global U(1) symmetry, $\boldsymbol{\theta}$ turn into a dynamical variable, relaxes to zero

Axion

Pseudo Goldstone-Boson of spontaneous symmetry breaking of PQ at yet unknown scale $\rm f_a$

Properties of this potential DM candidate

- Extremely weakly-coupled fundamental pseudo-scalar
- Generic coupling to two photons
- Mass unknown $m_a \propto g_{a\gamma}$,
- Astrophysics: $g_{a\gamma} < 10^{-10} \text{ GeV}^{-1}$
- \rightarrow Dark matter candidate

"Prendere due

Blackbody photons (keV) in solar core can be converted into axions in the presence of strong electromagnetic fields in the plasma \rightarrow Primakoff Effect

$$\frac{\mathrm{d}\Phi_{\mathrm{a}}}{\mathrm{d}E} = 6.02 \times 10^{10} \left(\frac{g_{a\gamma}}{10^{-10} \mathrm{GeV}^{-1}}\right)^2 E^{2.481} e^{-E/1.205} \frac{1}{\mathrm{cm}^2 \mathrm{~s~keV}}$$

Van Bibber et al 1989 Phys. Rev. D 39 2089

~~~~~

e, Ze

e. Ze

### Non-minimal axion models



C→APA

First axion helioscope proposed by P. Sikivie P. Sikivie 1983 PRL 51 1415 Reconversions of axions into x-ray photons possible in strong laboratory magnetic field



First axion helioscope proposed by P. Sikivie P. Sikivie 1983 PRL 51 1415 Reconversions of axions into x-ray photons possible in strong laboratory magnetic field



Idea refined by K. van Bibber et al.

Van Bibber et al 1989 Phys. Rev. D 39 2089

Buffer gas to restore coherence over long magnetic field and access higher axion masses

$$P_{a \to \gamma} = \left(\frac{Bg_{a\gamma\gamma}}{2}\right)^2 \frac{1}{q^2 + \Gamma^2/4} \left[1 + e^{-\Gamma L} - 2e^{-\Gamma L/2}\cos\left(qL\right)\right] \quad \text{with} \quad q = \left|\frac{m_{\gamma}^2 - m_a^2}{2E_a}\right| \quad \text{GAS}$$



### **Helioscope Figure of Merit**



### **Helioscope Figure of Merit**



Expect improvement for next gen (International Axion Observatory): 1-1.5 orders of magnitude in sensitivity to  $g_{ay}$  (factor of 10000-20000 in S/N)

C≁AP∧

#### INTERNATIONAL AXION OBSERVATORY (IAXO)

- Next-gen helioscope for solar axions
- Mature and state-of-the-art technology
- Purpose-built large-scale superconducting magnet
  - Toroidal geometry
  - 25 meters long, up to 5.4 T
  - > 300 times larger FoM than CAST magnet
  - 8 conversion bores of 60 cm Ø
- 8 detection lines
  - X-ray optics with 0.2 cm<sup>2</sup> focal spot
  - Ultra-low background detectors
- ▶ 50% of Sun-tracking time.



Armengaud et al 2014 JINST 9 T05002 Irastorza et al 2011 JCAP 1106, 013

 $g_{av} \lesssim few 10^{-12} \text{ GeV}^{-1}$  (expected)



Compare to  $g_{av} \lesssim 5.7 \times 10^{-11} \text{ GeV}^{-1}$ 

#### BABYIAXO =INTERMEDIATE EXPERIMENTAL STAGE BEFORE IAXO

- ► Technological prototype of IAXO with only two magnet bores (10 m, Ø 70 cm)
- Relevant physical outcome (~10 × CAST B<sup>2</sup>L<sup>2</sup>A)
- Magnet will be upscalable version for IAXO
- > X-ray optics/detectors close to final IAXO configuration (focal length, performance)



## **BabyIAXO** Magnet

#### Baby

#### NEED: large magnetic field B & cross-sectional area A

- "Common coil" configuration
- Minimal construction risk and cost-effective
- Racetrack layout very close to IAXO toroidal design
- Some delays due to availability of Al-stabilized superconductor cable



Common-coil dipole, with counterflowing current in two superconducting race-track coils





## **BabyIAXO Detectors**

#### Baby VXO DETECTORS

#### NEED (Baseline 1-10 keV)

- ▶ Low background (<10<sup>-7</sup> 10<sup>-8</sup> cts keV<sup>-1</sup> cm<sup>-2</sup> s<sup>-1</sup>)
  - Less than 1 event per 6 months of data taking!
  - Already demonstrated 8×10<sup>-7</sup> c keV<sup>-1</sup> cm<sup>-2</sup> s<sup>-1</sup> and 10<sup>-7</sup> cts keV<sup>-1</sup> cm<sup>-2</sup> s<sup>-1</sup> above ground and at Canfranc, respectively
- High detection efficiency

#### WANT (Beyond baseline)

- Low E-threshold (< 1 keV) and improved E-resolution</p>
  - Especially interesting for axion-electron measurements
  - Notably useful in case an axion signal is detected

Micromegas best option to reach required low background Additional technologies considered /active R&D efforts (GridPix, MMC, TES, SDD)





## **BabyIAXO Optics**

#### Baby

NEED: Maximized throughput efficiency (40-60%), Small focal spot (r < 2.5 mm), Cost-effective way (need 8 for IAXO)

- Baseline 1-10 keV (prototyping and R&D)
  - Existing XMM flight-spare telescope
  - Custom IAXO optic (NuSTAR/BRAVO)
- Beyond baseline (funding request pending)
  - Lower threshold of 0.3 keV or better
  - Add sensitivity at 14.4 keV

#### Leveraging decades of NASA/ESA research for space instrumentation: minimal risk and superior performance

Henriksen et al 2021 AO 60, 22; Irastorza et al 2015 JCAP 12, 008



#### NuSTAR Pathfinder



#### **BRAVO** Pathfinder



## **BabyIAXO Location**

#### Baby VXO @DESY

- DESY HERA hall as BabyIAXO site
- CTA Medium Sized
  Telescope (MST) support and drive system to be used for BIAXO
- End-to-end simulation of (B)IAXO experiment



Rare Event Searches Toolkit software

Expect to commission BabyIAXO without magnet before baseline science run





## **Next-gen experiments**

#### Vacuum Phase

Coherence condition valid for  $m_a \lesssim 0.02 \; eV$ 

#### Gas Phase

- Extends coherence condition valid from  $0.02 \text{ eV} \lesssim m_a \lesssim 0.26 \text{ eV}$ 

$$m_{\gamma} = 4.498716 \sqrt{\frac{P_{He}[\mathrm{atm}]}{T_{He}[\mathrm{K}]}} \; \mathrm{eV}. \label{eq:m_gamma}$$

- Experimental conditions BIAXO:
  - $P_{max}$ (helium-4)  $\simeq$  1bar
  - T(average)  $\simeq$  295K



Armengaud et al 2019, JCAP 1906, 047

#### IAXO as a generic axion(-like) detection facility

(Baby)IAXO constitutes a great infrastructure that can be used to target other physics goals beyond Primakoff solar axions



+ More (dark photons, chameleons, gravitational wave searches and NS studies)...

- Axions = DM candidates simultaneously solving strong CP
- Axions can be searched for with haloscopes, helioscopes and LSTW
- Solar axion searches probe large regions of axion parameter space
- Current best limit on solar axion (CAST): g<sub>av</sub> < 5.7 × 10<sup>-11</sup> GeV<sup>-1</sup>
- ► BabyIAXO (IAXO) targets axion discovery: few 10<sup>-11</sup> (10<sup>-12</sup>) GeV<sup>-1</sup> in g<sub>ag</sub>
- Intriguing IAXO physics cases beyond axion-photon (g<sub>ae</sub>, g<sub>aN</sub>, QCD, ALPs, astrophysical hints, dark photons, dark energy...)

# BACKUP SLIDES

### Non-minimal axion models

Via axion-nucleon couplings can also observe monochromatic lines from nuclear transitions

- keV axions: M1 transition of Fe-57 nuclei @14.4 keV and Tm-169 @8.4 keV
- MeV axions:

From <sup>7</sup>Li (0.478 MeV) and D(p; $\gamma$ )<sup>3</sup>He (5.5 MeV)

Axions-nucleon coupling  $g_{aN}$  especially intriguing: If the axion couples via  $g_{aN}$ , most likely a QCD axion





$$\Phi_a = 5.06 \times 10^{23} \ (g_{aN}^{\text{eff}})^2 \ \text{cm}^{-2} \text{s}^{-1} \ .$$

Di Luzio *et al* 2022 *Eur. Phys. J.* C 82:120 CAST collaboration *et al* 2009 *JCAP* 12 002 D. Miller *et al* 2010 JCAP 1003 032 Derbin *et al* 2023 *Jetp Lett.* 118, 160

## **Solar Axion Detection**

In vacuum, conversion probability simplifies to:



with N<sub>e</sub>: number of electrons/cm<sup>3</sup> and  $\rho$ : gas density (g/cm3)

#### Non-Primakoff solar axions

 ABC axions via axion-electron coupling or solar axions via axion-nucleon coupling as mentioned before:

#### → needs more specialized detection systems (XRTs. detectors)

- ALP production in large-scale B-fields in the Sun
  - Solar B-field dependence (field not well known but can be constrained)
  - ALP flux from longitudinal plasmon (LP)-ALP conversions peaks around 100 eV (could be detectable with upgraded IAXO)
  - Depends on axion-photon coupling
  - Transversal plasmon-ALP conversion depends also on axion mass

#### Guarini et al. 2010.06601



## **IAXO Physics**

**C**APA

## **Beyond baseline physics**



## **IAXO Physics**

## **Beyond baseline physics**

#### Axion from galactic supernova

- If a sufficiently close-by galactic SN explodes, SN axions could be detectable at (Baby)IAXO.
- SN axions have O(100MeV) energies
- Requires IAXO to be equipped with large HE γ-ray detector, covering all magnet bore, sufficient pointing accuracy, alert system in place
- Can be implemented complementary to baseline BabyIAXO setup by using opposite side of magnet.



## **IAXO** Physics

## **Beyond baseline physics**

- Use of (Baby)IAXO large magnetic volume for axion DM setups
- Very competitive prospects for 1-2 μeV axion searches.
  - 4 x 5m long cavities with tuning slabs
  - Low noise (standard) amplification + DAQ
  - Bores cooled down to 4-5 K
  - Sensitivity to KSVZ in < 2 year data acquisition
- Other implementations are being discussed (need more work)
  - E.g. extension to much lower masses using BASE-like search inside BabyIAXO possible?



Ahyoune et al. (RADES Collaboration) arxiv:2306.17243

### **BabyIAXO beyond the baseline**

Other and more recent ideas to be studied by newly installed IAXO Physics group including:

 Gravitational waves: High frequency GWs are expected in non-standard scenarios, e.g.
 PBHs → future synergies with axion experiments?

→ Valerie's lecture @Axion++ 2023



#### → Maurizio's lecture @Axion++ 2023



**C**≁P∧