UTokyo

Current status and future plans of Dark matter Axion search with riNg Cavity Experiment (DANCE)

<u>Hinata Takidera</u>^A, Hiroki Fujimoto^A, Yuka Oshima^A, Satoru Takano^B, Kentaro Komori^C, Jun'ya Kume^{D,E,C}, Soichiro Morisaki^F, Koji Nagano^G, Tomohiro Fujita^H, Ippei Obata^I, Atsushi Nishizawa^J, Yuta Michimura^C, Masaki Ando^{A,C}

Dept. of Phys., UTokyo^A, Dept. of Phys., Tokyo Tech^B, RESCEU^C, UNIPD^D, INFN^E, ICRR^F, LQUOM^G, Dept. of Phys., Ochanomizu Univ.^H, Kavli IPMU^I, ADSE, Hiroshima Univ.^J

IDM2024, July 10th, 2024

Abstract

Aim to detect axion with a bow-tie optical ring cavity

- Laser interferometer
- Axion-photon interaction
- Simultaneous resonance
- \rightarrow Conduct a sensitive broadband axion search

DANCE

Contents

- Introduction
- First results of DANCE Act-1
- Simultaneous resonance
- Current status of DANCE Act-1
- Future plans for DANCE
- Summary

Dark matter

- Account for about 80% of all the matter in the universe
- Extensive research is being conducted
- One of the leading candidates of dark matter: Axion

Axion and Axion-Like-Particles (ALPs)

- Pseudo-scalar particle (QCD axion) is suggested to solve strong CP problem on Quantum Chromo Dynamics (QCD)
- Various Axion-Like-Particles (ALPs) is predicted
- Many experiments have utilized the axion-photon conversion under magnetic field (Primakoff effect). However, axion has not been observed yet.

Characteristics (ALPs)

- Very light particles \rightarrow Behave like waves
- Axion weakly interacts with photon, electron, proton

Previous searches

Axion-photon interaction

Axion-photon interaction induces phase velocity difference between left-handed and right-handed circularly polarized light

$$c_{
m L/R}(t) = 1 \pm rac{g_{a\gamma}a_0m_a}{\sqrt{2k}} \sin(m_a t + \delta_{ au})$$

Phase velocity Axion-photon coupling Axion field Phase factor

Regard as a rotation of linearly polarized light

Rotation angle of linearly polarized light

$$\Delta heta(l,t) = rac{g_{a\gamma}\sqrt{2
ho_a}}{m_a} \sin\left(m_a\,rac{l}{2}
ight) \sin\left(m_a\left(t-rac{l}{2}
ight)+\delta_ au
ight)$$

Axion dark matter

• Detect p-polarized light (Axion signal)

Avion mass

• Amplify it by using longer optical path

How to amplify the axion signal

Extend optical path with a bow-tie ring cavity Axion dark matter

Rotation of polarization can be amplified because the flip is canceled by reflections on both two mirrors

DANCE

DANCE (Dark matter Axion search with riNg Cavity Experiment)

- Dark matter axion search with laser interferometer technique
- Bow-tie optical ring cavity

Measure the amount of modulated p-polarized light (Axion signal) by amplifying it with a bow-tie optical ring cavity

Target sensitivity of DANCE

First observation of DANCE Act-1

- DANCE Act-1: the prototype experiment
- Started in 2019
- First observation was conducted in May 18-30, 2021
- Obtained the rotation angle of linear polarization \rightarrow Data analysis

Y. Oshima et al.: arXiv:2110.10607

Result

- First demonstration of dark matter axion search with a bow-tie optical ring cavity
- Upper limit was worse than target sensitivity by 7 orders of magnitude

Consideration

- Improve classical noises (laser intensity noise, laser frequency noise, and mechanical vibration)
- \rightarrow Reach current shot noise limit
- Improve observation time, input power, finesse
- Achieve simultaneous resonance between s-pol. and p-pol.
- → Reach target sensitivity

Simultaneous resonance

1 DANCE with an auxiliary cavity

- Achieved simultaneous resonance for the first time in November 2021 by adding an auxiliary cavity to compensate for the reflection phase difference between s-pol. and p-pol.
- p-pol. is resonant in an auxiliary cavity by tuning PZT

H. Fujimoto *et al.*: J. Phys. Conf. Ser. **2156**, 012182 (2021).

1 DANCE with an auxiliary cavity

- Improved by more than 2 orders of magnitude than first results of DANCE Act-1
- Need to reduce the optical loss in an auxiliary cavity

- Mirrors of reflection phase difference between s-pol.and p-pol. depends on laser wavelength
 - \rightarrow Wavelength sensitive phase-shifting mirror
- Select the wavelength by wavelength tunable laser: ECDL (External Cavity Diode Laser)
- Constructing setup is in progress

ECDL (External Cavity Diode Laser)

- Wavelength range: 1045 1068 nm
- FWHM: 200 kHz
- Output power: 20 50 mW

Characteristics

- Select wavelength by finely adjusting the angle of the Interference Filter (IF) \rightarrow The optical axis remains because the structure has a transparent design
 - Amplify output power by constructing cavity between LD and OC
- Ampling output power by constructing cavity between LD and OC
 Observations and Deviation to the structure of the str
- Closed structure \rightarrow Resistant to acoustic noise and vibrations

- Proof of principle of simultaneous resonance with a folded cavity
- Reflection phase difference between s-pol. and p-pol. depends on wavelength
- Time drift of the reflection phase difference between s-pol. and p-pol. \rightarrow Solve this issue to conduct an accurately sensitive axion search

 $\Delta\phi$: reflection phase difference between s-pol. and p-pol. per mirror

Requirement for simultaneous resonance

Mirror	Reflectivity	CC [mm]
Front	99%	50
End	99%	50
Test	s-pol.: 99.99%, p-pol.: 99.97%	1000

- Proof of principle of simultaneous resonance with a folded cavity
- Reflection phase difference between s-pol. and p-pol. depends on wavelength
- Time drift of the reflection phase difference between s-pol. and p-pol.
 - \rightarrow Solve this issue to conduct an accurately sensitive axion search

Satisfy requirement for simultaneous resonance

- Coherence with temperature
- Need to reduce time drift

- Current status of DANCE with an ECDL
- Able to achieve simultaneous resonance by tuning at ~ 1066 nm
- \rightarrow Tune the wavelength precisely to achieve simultaneous resonance

wavelength [nm]

* Specification of this mirror is different from before one

Future plans for DANCE

- Long-term observation of DANCE with an auxiliary cavity
 → Determine upper limit
- Investigating the cause of time drift of the reflection phase difference between s-pol. and p-pol. with a folded cavity
- Introduce power amplifier (50 mW \rightarrow 1 W) for DANCE with an ECDL
 - \rightarrow Achieve target sensitivity

Summary

DANCE (Dark matter Axion search with riNg Cavity Experiment)

- Dark matter axion search with a bow-tie optical ring cavity by detecting a rotation angle of linearly polarized light
- First observation of DANCE Act-1 was conducted in May 18-30, 2021
- Achieved simultaneous resonance in November 2021 by adding an auxiliary cavity
- DANCE with an ECDL is in progress
- Aim to achieve the world's most sensitive dark matter axion search

Backup

Data analysis

- 556 points exceeded the detection threshold
- Veto candidates of axion signal as follow procedures
- The persistence veto (Comparison with two set of data): $556 \rightarrow 257$
- The line width veto (Comparison with the expected line width of the galactic dark matter): $257 \rightarrow 7$
- Comparison with error signal: $7 \rightarrow 0$ $(\mathbf{3})$
- \rightarrow We succeed to veto all candidates of Axion signal

Candidates of Axion signal

How to calibrate reflection phase difference ²⁶

Reflection phase difference

Measurement result $\Delta \phi = \phi_{
m s} - \phi_{
m p} = 0.002(1)~{
m deg}~@1066.7~{
m nm}$

ightarrow Satisfy requirement for simultaneous resonance: $\Delta\phi \leq 0.015~{
m deg}$

 \rightarrow Obtained wavelength which achieves simultaneous resonance