

A new upper limit on the axion-photon coupling with an extended CAST run with a Xe-based Micromegas detector

Cristina Margalejo on behalf of the CAST Collaboration

15th International Workshop on the Identification of Dark Matter 2024 8th July 2024

L'Aquila - Italy

Introduction

Axion heliosopes and state of the art

Solar axions and helioscopes

State of the art: CAST

CERN Axion Solar Telescope

A powerful **axion helioscope** \rightarrow more than 20 years of experience Decommissioned prototype **LHC dipole magnet** \rightarrow Length = 10 m; Magnetic field = 9 T **Solar tracking** possible during sunrise and sunset (2 x 1.5 h per day)

2013-2015: IAXO pathfinder

Sunrise detector: x-ray focusing optics + Micromegas (IAXO Pathfinder) Best experimental limit on axion-photon coupling over broad axion mass range

 $g_{\rm av}$ < 0.66 × 10⁻¹⁰ [GeV⁻¹] (95% C.L.) for m_a < 0.02 eV

2017-2018: GridPix detector + X-ray focusing optics

2019-2021: new data taking campaign with IAXO pathfinder

State of the art: CAST

The IAXO pathfinder system at CAST

Active shielding: plastic scintillator as a cosmic muon veto.

Passive shielding: 10 cm of lead around the detector.

X-ray optics

The IAXO pathfinder ultra-low background detector

Microbulk Micromegas detectors

- Very homogeneous amplification gap, uniform gain.
- Intrinsically radiopure.
- Good energy and spatial resolution.
- Pixelized readout gives topological information.

Interface

copper

tube

⁵⁵Fe Calibration intensity map

X-ray window

- Signal reaches the active volume through a mylar window.
- X-rays ionize the gas in the conversion region and the produced signal is read by the Micromegas.
- Data is analyzed with the <u>REST-for-Physics framework</u> (github.com/rest-for-physics).

Rare Event Searches Toolkit software

The new data taking campaign

- 1. Motivation
- 2. Use of Xe-based gas mixtures

Motivation for the new data taking campaign

<u>R&D for BabyIAXO and IAXO</u>

- Closed-loop Xe-based gas system (Xe+Ne+2.3% iC4H10).
- Insight into limitations of background and threshold.
- Provide technical and operational experience.
- Software development.
- Identify challenges and reduce risks towards IAXO.

• Increase the statistics and sensitivity in $g_{a\gamma}$

- ~160 hours with a GridPix detector.
- ~320 hours with a Micromegas detector.

github.com/rest-for-physics

Towards Xe-based gas mixtures

- Background is reduced a few orders of magnitude based on the topological signature of X-rays: small, symmetric and point-like events.
- Typical background spectra with Ar-based mixtures has peak at ~3 keV.

150F

140[|]

For better results we need to reduce the background in this energy range.

Calibration

event

ш ¹¹⁰

Background

event

Towards Xe-based gas mixtures

- Background is reduced a few orders of magnitude based on the topological signature of X-rays: small, symmetric and point-like events.
- Typical background spectra with Ar-based mixtures has peak at ~3 keV.

150F

140[|]

For better results we need to reduce the background in this energy range.

Calibration

event

ш ¹¹⁰

Background

event

Towards Xe-based gas mixtures

Dataset	Background exposure (h)	Background level (2, 7) keV (x10 ⁻⁶ c keV ⁻¹ cm ⁻² s ⁻¹)	Tracking exposure (h)	Gas	Years
1	2476	1.7 ± 0.1	130	Ar + 2.3% iso	2019-2020
2	335	2.3 ± 0.4	25.6	Ar + 2.3% iso	2020
3	3416	1.5 ± 0.1	159	48.85% Xe + 48.85% Ne + 2.3% iso	2020-2021
Total	6227		314.6		

Improving the overall efficiency

- Hardware efficiency:
 - We don't use a differential window anymore. Especially noticeable at low energies.
 - Use of Xe-based gas mixtures.
- Software efficiency:
 - A sophisticated cut definition has increased the efficiency at low and high energies (away from the ⁵⁵Fe peaks).

The new upper limit on $g_{a\gamma}$

X-ray like events during tracking

Calibration data

X-ray like events during tracking

New upper limit on the axion-photon coupling

CAST benchmark for the axion-photon coupling g_{av} < 6.6×10⁻¹¹ GeV⁻¹ (NPHYS4109)

	Upper limit on $g_{a\gamma}^{*}$	
	(×10 ⁻¹¹ GeV ⁻¹)	
Limit new data	6.9	
Limit new data + benchmark	5.9	
Limit new data + benchmark	Γ 7	
+ Gridpix	5.7	

17

New upper limit on the axion-photon coupling

Thank you for your attention

The CAST Collaboration

Backup slides

Solar axions and helioscopes

Hardware

The IAXO pathfinder system

The IAXO pathfinder system at CAST

The IAXO pathfinder system at CAST

Gas system upgrade

- Argon data taking was in open loop \rightarrow clean and fresh gas always available.
- Xenon is too expensive \rightarrow we need to recirculate the gas.
- Not free of challenges!

⁵⁵Fe calibrations and *live* data quality control

⁵⁵Fe calibrations and *live* data quality control

Calibrations in the X-ray lab at CERN

Target	Energy (keV)	\mathbf{Filter}	$\mathbf{Range}\ (\mathbf{keV})$
Al	1.5	Al	-
Au	2.1	PEEK	2.0-3.5
Ag	3.0	Ag	-
Ti	4.5	Ti	3.5 - 5.5
Mn	5.9	\mathbf{Cr}	5.5 - 6.5
\mathbf{Co}	6.9	${\rm Fe}$	6.5 - 7.5
Cu	8.0	—	7.5 - 10

We cover the energy RoI from solar axion flux : (0.1, 10)keV

Calibrations in the X-ray lab at CERN

Software

The REST-for-physics framework

The REST-for-physics framework

- The <u>REST-for-Physics</u> (Rare Event Searches Toolkit) Framework is a collaborative software effort that provides common tools for:
 - acquisition,
 - simulation,
 - data analysis

Centralizing site

- It was originally designed to work with data of gaseous Time Projection Chambers (TPCs).
- It is mainly written in C++ and it is fully integrated with <u>ROOT</u> I/O interface.
- The REST framework establishes a common procedure and output data format to define input information, via configuration (.rml) files.
- It allows for official version control, so that all official data will be fully reproducible.

<u>https://rest-for-physics.github.io/</u>

Event reconstruction with REST-for-physics

Example: microbulk detector for IAXO and event reconstruction from real detector data

Event reconstruction with REST-for-physics

34

Background discrimination

The computed observables are used to define selection algorithms. Four main types of cuts are applied:

- Energy cuts: e.g. (1,10) keV.
- Fiducial cut: to select the size of the spot (e.g. 10 mm²).
- Topological cuts: event size and shape in the XY plane and in the Z direction.
- Veto event coincidence cut.

Data taking

Summary of the data taking

Dataset	Background exposure (h)	Background level (2, 7) keV (x10 ⁻⁶ c keV ⁻¹ cm ⁻² s ⁻¹)	Tracking exposure (h)	Gas	Years
1	2476	1.7 ± 0.1	130	Ar + 2.3% iso	2019-2020
2	335	2.3 ± 0.4	25.6	Ar + 2.3% iso	2020
3	3416	1.5 ± 0.1	159	48.85% Xe + 48.85% Ne + 2.3% iso	2020-2021
Total	6227		314.6		

37

Datasets 1 and 2 (Ar)

- Energy threshold = 0.4 keV
- Energy resolution at 5.9 keV \sim 23 %
- Standard deviation of gain = 3.3%
- Efficiency ⁵⁵Fe peak ~ 80%

Dataset 3 (Xe)

- Standard deviation of gain = 2.5 9%.
- Energy threshold = 0.5 2 keV (~6 trackings with threshold > 1 keV).
- Energy resolution at 5.9 keV ~ 18 20%.
- Efficiency ⁵⁵Fe peak ~ 88 90%.
- 97% of 1 track events in ⁵⁵Fe calibrations according to simulations.

<pre># trackings with threshold > 1 keV</pre>	6
# trackings with threshold > 1.5 keV	3
Total Xe trackings	109

Data analysis

Background computation and expected limit

Different efficiency: 2017 vs current

The current analysis yields a higher efficiency.

- Software efficiency:
 - A more sophisticated cut definition has increased the efficiency at low and high energies (away from the ⁵⁵Fe peaks).
- Hardware efficiency:
 - We don't use a differential window anymore. Especially noticeable at low energies.
 - Use of Xe-based gas mixtures.
 - The detector response matrix has been taken into account.
- Optics efficiency:
 - Unchanged (LLNL).

Different efficiency: 2017 vs current

The current analysis yields a higher efficiency.

- Software efficiency:
 - A more sophisticated cut definition has increased the efficiency at low and high energies (away from the ⁵⁵Fe peaks).
- Hardware efficiency:
 - We don't use a differential window anymore. Especially noticeable at low energies.
 - Use of Xe-based gas mixtures.
 - The detector response matrix has been taken into account.
- Optics efficiency:
 - Unchanged (LLNL).

Improving the overall efficiency

- Software efficiency:
 - A more sophisticated cut definition has increased the efficiency at low and high energies (away from the ⁵⁵Fe peaks).
- Hardware efficiency:
 - We don't use a differential window anymore. Especially noticeable at low energies.
 - Use of Xe-based gas mixtures.
- Optics efficiency:
 - Unchanged.

Improving the overall efficiency

• Software efficiency:

 A sophisticated cut definition has increased the efficiency at low and high energies (away from the ⁵⁵Fe peaks).

• Hardware efficiency:

- We don't use a differential window anymore. Especially noticeable at low energies.
- Use of Xe-based gas mixtures.

Opening the box: computing a limit

Inputs

- 1. Background data (no tracking data)
- 2. Signal+background data (solar tracking data)
- 3. Primakoff spectrum corrected by our efficiency: telescope, window, gas, strongback.

20 3 x [mm]

New upper limit on the axion-photon coupling

*at 95% C.L. for $m_a < 0.02~{
m eV}$