Freeze-in sterile neutrino dark matter in the minimal gauge B-L model

Osamu Seto (Hokkaido University)

With Takashi Shimomura (Miyazaki U.) and Yoshiki Uchida (South China Normal University)

Ref : 2404.00654

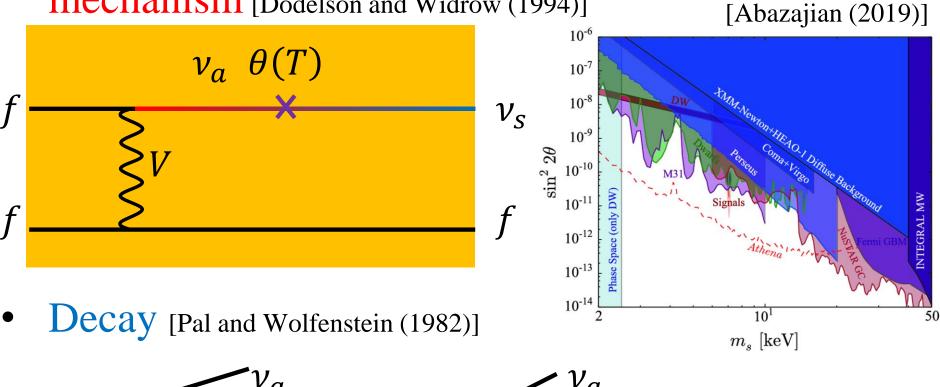
Also with Shintaro Eijima and Takashi Shimomura in PRD **106** 103513 (2022)

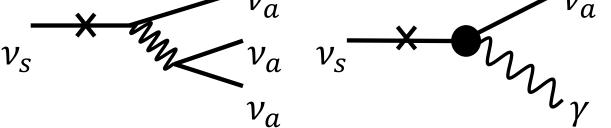
§ Introduction

Adding RH neutrinos

• Adding RH neutrinos

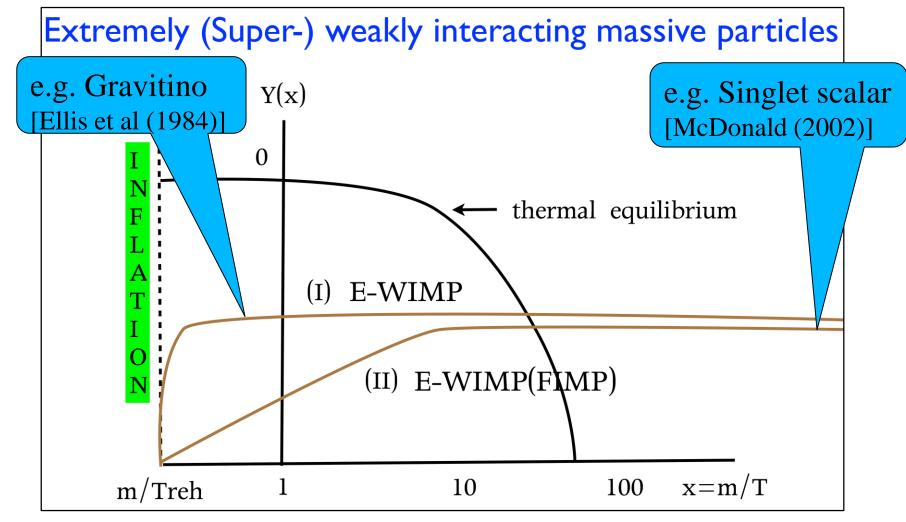
$$\mathcal{L} = \mathcal{L}_{SM} + \frac{i}{2} \overline{\nu_R} \not \partial \nu_R - y \, \overline{L} \Phi \nu_R - \frac{1}{2} \overline{\nu_R^C} M_M \nu_R + h.c.$$


•
$$\begin{pmatrix} 0 & m_D \\ m_D & M_M \end{pmatrix} \rightarrow \begin{pmatrix} -m_D^T \frac{1}{M_M} m_D & 0 \\ 0 & M_M \end{pmatrix}$$


• $v_a \cong U_{MNS}v_L + \theta v_R^C$ Neutrino oscillation

- $v_s \cong \theta v_L + v_R^C$ Sterile neutrino, almost RH
- $\theta = \frac{m_D}{M_M} \ll 1$: active-sterile mixing

Sterile neutrino is decaying DM


• Production: Dodelson-Widrow mechanism [Dodelson and Widrow (1994)]

§ Freeze in Production

• A kind of non-thermal production

By courtesy of K.Y. Choi

§ Sterile neutrino DM in feeble gauged U(1) extended model

Model

- Gauged U(1) extension
 - $U(1)_{B-L}$: +1 for baryon, -1 for lepton

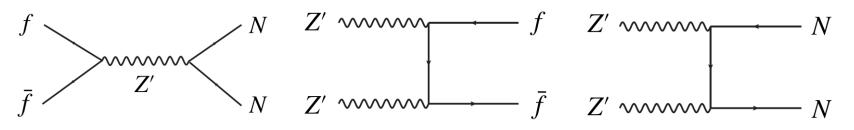
	$SU(3)_C$	$SU(2)_L$	$U(1)_Y$	$U(1)_{B-L}$
Q^i	3	2	$\frac{1}{6}$	$\frac{1}{3}$
u_R^i	3	1	$\frac{2}{3}$	$\frac{1}{3}$
d_R^i	3	1	$-\frac{1}{3}$	$\frac{1}{3}$
L^i	1	2	$-\frac{1}{2}$	-1
e_R^i	1	1	-1	-1
$ u_R^i$	1	1	0	-1
Φ_H	1	2	$\frac{1}{2}$	0
Φ_{B-L}	1	1	0	2

• Masses

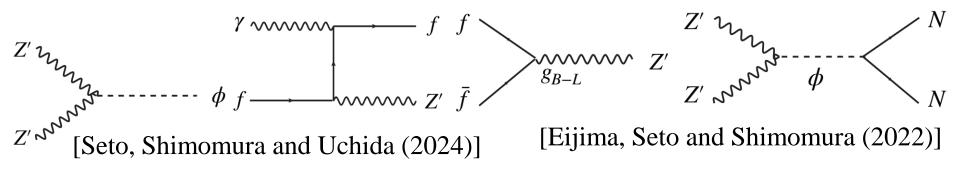
•
$$m_{Z'}^2 = 4g_{B-L}^2 v_{B-L}^2$$

•
$$m_{\nu_R^i} = \frac{\nabla \nu_R^i}{\sqrt{2}} \nu_{B-L}$$

- Singlet-like ϕ
- SM-like *h*


• The $h - \phi$ mixing α

Sterile neutrino DM production


- ν_s DM by Z' mediated non-thermal production [Khalil and Seto (2008), Kaneta, Kang and Lee (2017), Biswas and Gupta (2017), ...] (hereafter, N instead of ν_s)
- Processes considered 10^{-4} in previous works $2M_{N_1} > M_Z$ E141 Borexino Orsev 10-5 $\Omega_{N_{1}}^{nt}h^{2}=0.12$ $2M_N, <M_Z$ E141 Orsev ~~~~~ 10-6 ⁷⁻01 10⁻⁷ ΗB N E137 ~~~~~ v-Cal I 10⁻⁸ 10^{-9} v-Cal SN1987A 10-10 10^{-4} 10^{-3} 10^{-2} 10^{-1} 10^{0} 10^{2} 10^{1} N $M_{Z'}[GeV]$ 10^{-3} 10-2 10-1 10^{0} 10^{2} 10 Z'N [Kaneta, Kang and Lee (2017)]

Sterile neutrino DM production

- ν_s DM by Z' mediated non-thermal production [Khalil and Seto (2008), Kaneta, Kang and Lee (2017), Biswas and Gupta (2017), ...] (hereafter, N instead of ν_s)
- Processes considered in previous works

We found (sometime more) important modes

Phenomenology depends on spectrum

- $2m_N < m_{Z'}$
 - Decay $Z' \rightarrow NN$ is dominant
 - Non-thermal Z'
 - May be too warm
- $m_{Z'} < 2m_N$

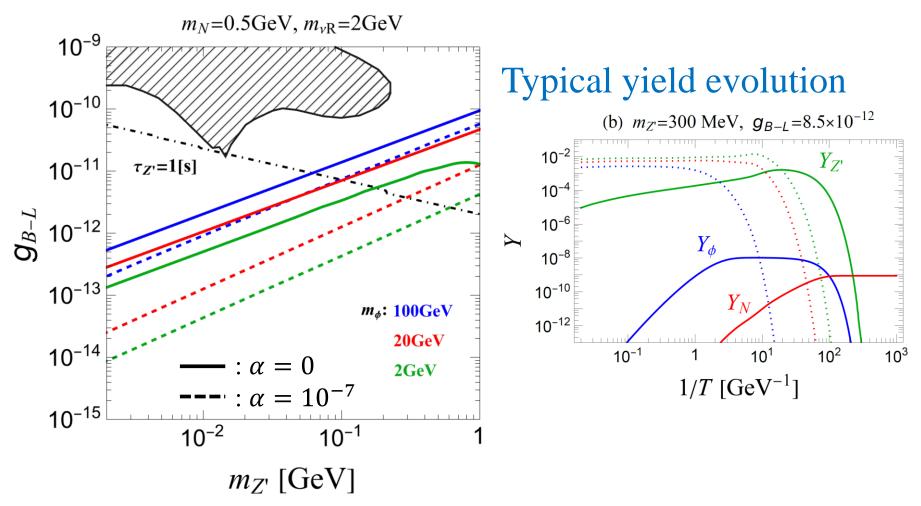
Z' are thermalized

 g_{B-L}

- For $m_{\phi} > 2m_N$, Decay $\phi \rightarrow NN$ is dominant
 - Neither Z' nor ϕ are thermalized
- For $m_{\phi} < 2m_N$, $Z'Z' \rightarrow NN$ or $f\bar{f} \rightarrow NN$ dominant

Higgs portal through the mixing Neither Z' nor ϕ are thermalized

 $g_{B-L} \lesssim 10^{-9}$

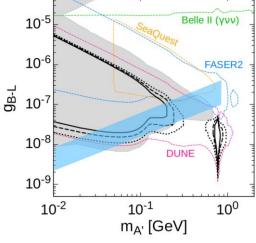

§§ $2m_N < m_{Z'}$

- Main production mode : $f\bar{f} \rightarrow Z' + Z' \rightarrow 2N$
- The free streaming length λ_{fs} bound [Irsic et al (2017)] 10^{-7} $0.01 Mpc < \lambda_{fs} < 0.1 Mpc$ $\lambda_{\rm fs} < 0.01 \, {\rm Mpc}$ Beam dump constraint 10^{-8} SN1987A constraint 10⁻⁹ 1 MeV m_N 0.100 Y^{eq} $\frac{1}{6}$ 10⁻¹⁰ 100 MeV 0.001 Y_N \succ $Y_{Z'}$ 10⁻¹¹ 10⁻⁵ 10 GeV 10^{-7} 10⁻¹² BBN: $\tau_{Z'} > 0.1$ sec 0.01 0.10 1 10 100

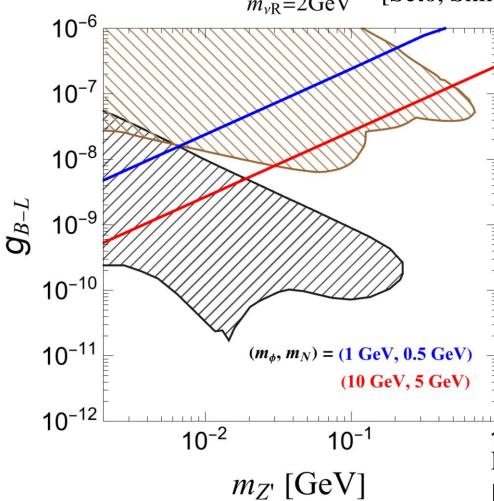
§§ $m_{Z'} < 2m_N < m_{\phi}$

• Main modes : $f\gamma \to fZ' + Z'Z' \to \phi + \phi \to 2N$

[Seto, Shimomura and Uchida (2024)]


§§ $m_{Z'}, m_{\phi} < 2m_N$

• $Z'Z' \rightarrow NN$ dominant case


 $m_{\nu R}=2 \text{GeV}$ [Seto, Shimomura and Uchida (2024)]

The parameter region can be probed by future longlived particle searches

Dedicated study to our model is ongoing [Seto, Shimomura and Uchida]

§ Summary

- We reexamined sterile neutrino DM in $U(1)_{B-L}$.
- Solving the Boltzmann eq. for *N* is not enough.
- $2m_N < m_{Z'}$ case and $m_{Z'} < 2m_N < m_{\phi}$ case $\geq All Z', \phi$ and N are non-thermal. $\geq g_{B-L} \leq 10^{-9}$
- $m_{Z'}, m_{\phi} < 2m_N$ case
 - $\succ g_{B-L} \lesssim 10^{-6}$
 - Z' may be found in long-lived particle search such as FASER2