Freeze-in sterile neutrino dark matter in the minimal gauge B-L model

Osamu Seto (Hokkaido University)

With Takashi Shimomura (Miyazaki U.) and Yoshiki Uchida (South China Normal University)

Ref: 2404.00654

Also with Shintaro Eijima and Takashi Shimomura in PRD **106** 103513 (2022)

§ Introduction

Adding RH neutrinos

Adding RH neutrinos

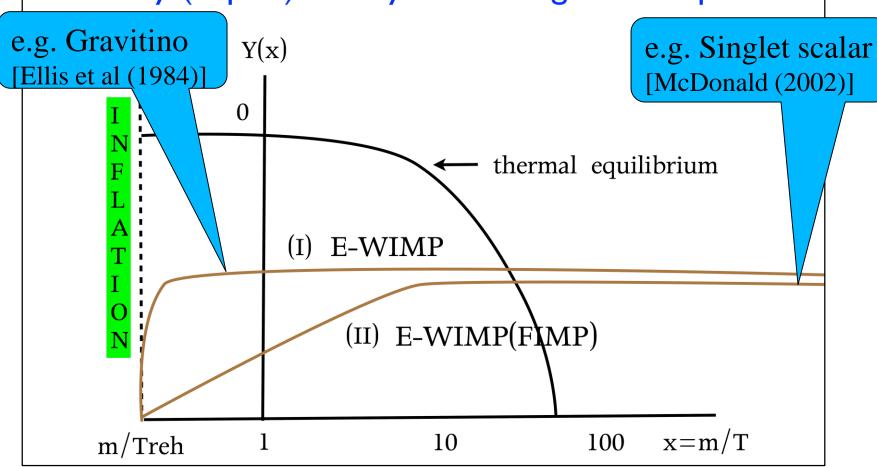
$$\mathcal{L} = \mathcal{L}_{SM} + \frac{i}{2} \overline{\nu_R} \not \partial \nu_R - y \, \overline{L} \Phi \nu_R - \frac{1}{2} \overline{\nu_R^C} M_M \nu_R + h.c.$$

• If Dirac masses Majorana masses, seesaw mechanism works [Minkowski (1977), Yanagida (1979), Gell-Mann et al (1979)]

$$\begin{pmatrix}
0 & m_D \\
m_D & M_M
\end{pmatrix} \rightarrow \begin{pmatrix}
-m_D^T \frac{1}{M_M} m_D & 0 \\
0 & M_M
\end{pmatrix}$$

- $v_a \cong U_{MNS}v_L + \theta v_R^C$ Neutrino oscillation
- $v_s \cong \theta v_L + v_R^C$ Sterile neutrino, almost RH
- $\theta = {m_D}/{M_M} \ll 1$: active-sterile mixing

Sterile neutrino is decaying DM


Production: Dodelson-Widrow

mechanism [Dodelson and Widrow (1994)] [Abazajian (2019)] 10^{-6} 10^{-7} 10^{-9} 10^{-10} 10^{-11} 10⁻¹² 10^{-13} Decay [Pal and Wolfenstein (1982)] 10^{1} m_s [keV]

§ Freeze in Production

A kind of non-thermal production

Extremely (Super-) weakly interacting massive particles

By courtesy of K.Y. Choi

§ Sterile neutrino DM in feeble gauged U(1) extended model

Model

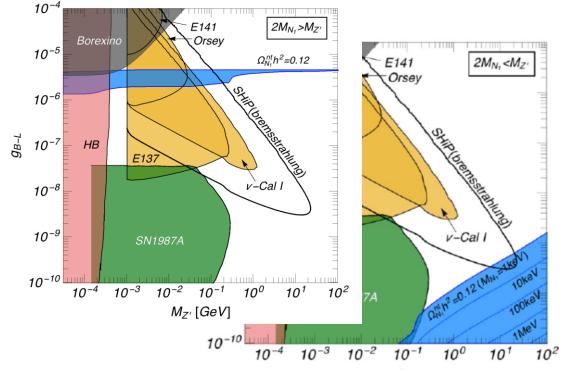
- Gauged U(1) extension
 - $U(1)_{B-L}$: +1 for baryon, -1 for lepton

	$SU(3)_C$	$SU(2)_L$	$U(1)_Y$	$U(1)_{B-L}$
Q^i	3	2	$\frac{1}{6}$	$\frac{1}{3}$
u_R^i	3	1	$\frac{2}{3}$	$\frac{1}{3}$
d_R^i	3	1	$-\frac{1}{3}$	$\frac{1}{3}$
$ig L^i$	1	2	$-\frac{1}{2}$	-1
e_R^i	1	1	-1	-1
$ u_R^i$	1	1	0	-1
Φ_H	1	2	$\frac{1}{2}$	0
Φ_{B-L}	1	1	0	2

Masses

•
$$m_{Z'}^2 = 4g_{B-L}^2 v_{B-L}^2$$

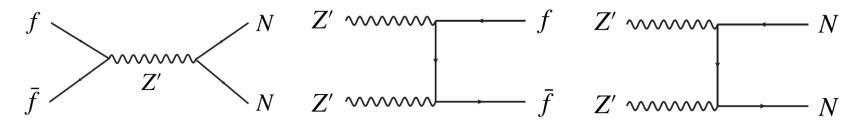
$$\bullet \quad m_{\nu_R^i} = \frac{y_{\nu_R^i}}{\sqrt{2}} v_{B-L}$$

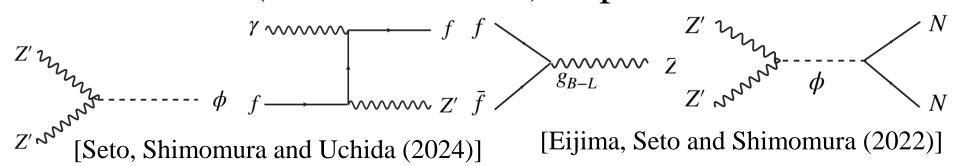

- Singlet-like ϕ
- SM-like *h*
 - The $h \phi$ mixing α

Sterile neutrino DM production

- ν_S DM by Z' mediated non-thermal production [Khalil and Seto (2008), Kaneta, Kang and Lee (2017), Biswas and Gupta (2017), ...] (hereafter, N instead of ν_S)
- Processes considered

in previous works $f \longrightarrow N$ $\bar{f} \longrightarrow N$ $Z' \longrightarrow f$ $Z' \longrightarrow \bar{f}$


N


[Kaneta, Kang ane Lee (2017)]

Sterile neutrino DM production

- ν_S DM by Z' mediated non-thermal production [Khalil and Seto (2008), Kaneta, Kang and Lee (2017), Biswas and Gupta (2017), ...] (hereafter, N instead of ν_S)
- Processes considered in previous works

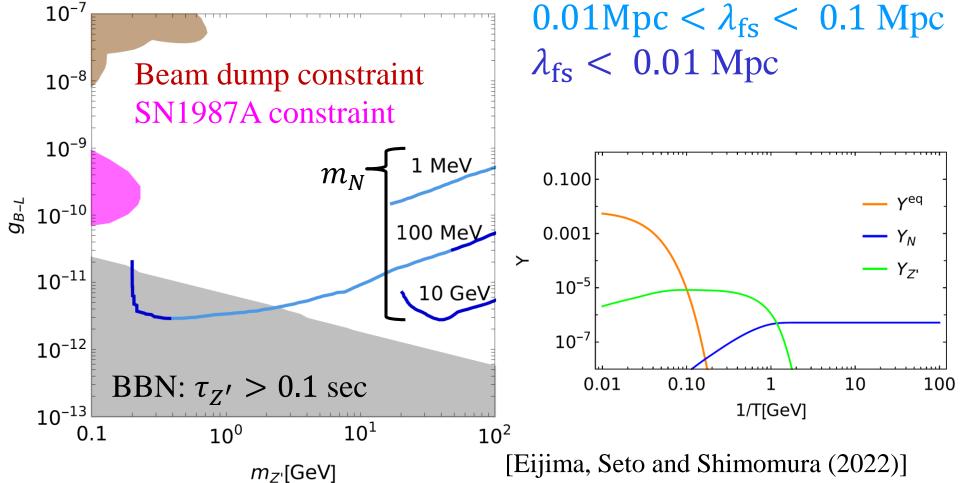
We found (sometime more) important modes

Phenomenology depends on spectrum

- $2m_N < m_{Z'}$
 - Decay $Z' \rightarrow NN$ is dominant
 - Non-thermal Z'
 - May be too warm

$$g_{B-L} \lesssim 10^{-9}$$

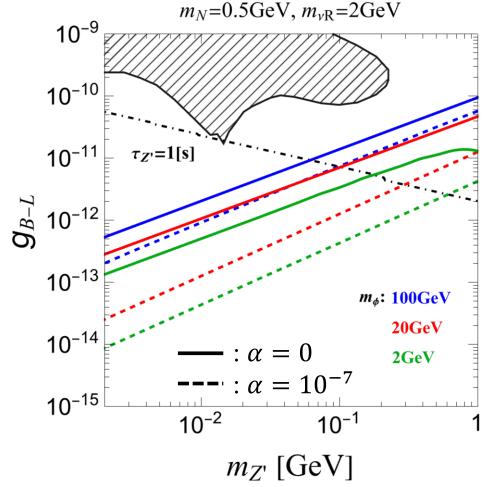
- $m_{Z'} < 2m_N$
 - For $m_{\phi} > 2m_N$, Decay $\phi \rightarrow NN$ is dominant
 - Neither Z' nor ϕ are thermalized
 - For $m_{\phi} < 2m_N$, $Z'Z' \to NN$ or $f\bar{f} \to NN$ dominant

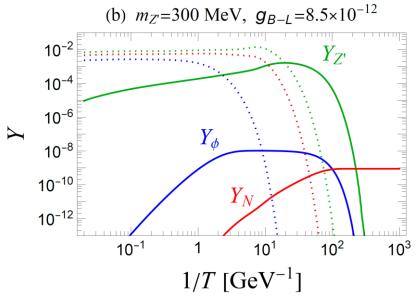

 $g_{B-L} \sim 10^{-6}$

Z' are thermalized

Higgs portal through the mixing Neither Z' nor ϕ are thermalized

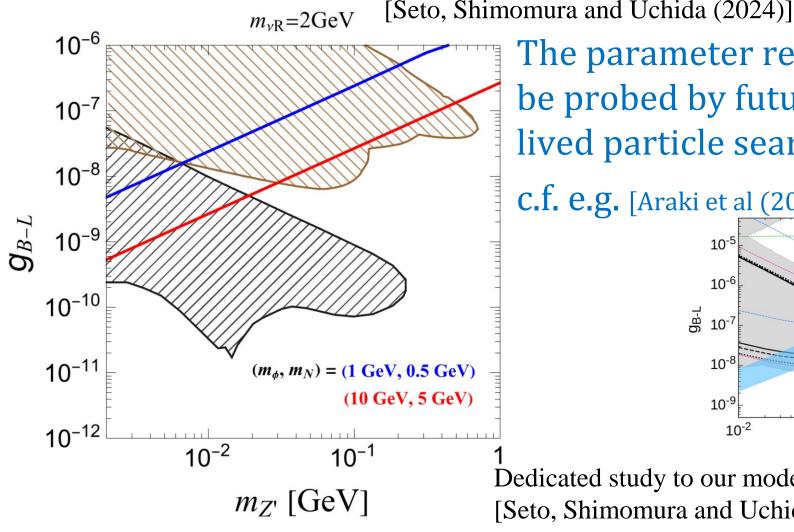
§ § $2m_N < m_{Z'}$


- Main production mode : $f\bar{f} \to Z' + Z' \to 2N$
- The free streaming length λ_{fs} bound [Irsic et al (2017)]

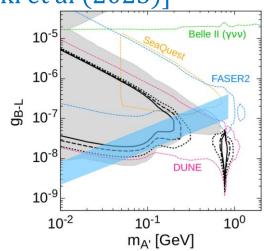

§§ $m_{Z'} < 2m_N < m_\phi$

• Main modes: $f\gamma \to fZ' + Z'Z' \to \phi + \phi \to 2N$

[Seto, Shimomura and Uchida (2024)]



Typical yield evolution


§ § $m_{Z'}, m_{\phi} < 2m_N$

• $Z'Z' \rightarrow NN$ dominant case

The parameter region can be probed by future longlived particle searches

c.f. e.g. [Araki et al (2023)]

Dedicated study to our model is ongoing [Seto, Shimomura and Uchida]

§ Summary

- We reexamined sterile neutrino DM in $U(1)_{B-L}$.
- Solving the Boltzmann eq. for *N* is not enough.
- $2m_N < m_{Z'}$ case
 - > Free streaming constraints
- $m_{Z'} < 2m_N < m_{\phi}$ case
 - $ightharpoonup f\gamma \to f\gamma Z'$, $Z'Z' \to \phi$ and $\phi \to NN$ are main modes.
 - $> g_{B-L} \lesssim 10^{-9}$
- $m_{Z'}$, $m_{\phi} < 2m_N$ case
 - $> g_{B-L} \lesssim 10^{-6}$
 - > Z' may be found in long-lived particle search such as FASER2