Warm Surprises from Cold Duets G. Belanger, JCP [1112.4491]

Park, Jong-Chul

A. Kamada, H.J. Kim, **JCP**, S. Shin [2111.06808] J.H. Kim, KC Kong, S.H. Lim, **JCP** [2312.07660 & in preparation]

IDM 2024 July 09 (2024)

Dark Sector: Dark Particles & Portals

- ✓ Vector portal (kinetic mixing): $\frac{\sin \epsilon}{2} B_{\mu\nu} X^{\mu\nu}$
- ✓ Scalar (Higgs) portal: $\lambda_{H\phi}|H|^2|\phi|^2$
- ✓ Fermion (neutrino) portal: $\lambda_{\chi} HL\chi$
- ✓ Pseudo-scalar (axion) portal: $\frac{1}{f_{a\gamma/ag}} a F_{\mu\nu} \tilde{F}^{\mu\nu}$

$$\frac{1}{f_{af}}\partial_{\mu}a(\bar{\psi}\gamma^{\mu}\gamma^{5}\psi)$$

- ✓ Dilaton portal: $\frac{\sigma}{f} (M_V^2 V_\mu V^\mu + \dots + V_{\mu\nu} V^{\mu\nu} + \dots)$
- ✓ Gauged SM global #: B-L, L_{μ} - L_{τ} , ...
- ✓ **Dark axion** portal: $G_{a\gamma\gamma}, aF_{\mu\nu}\tilde{X}^{\mu\nu}$
- ✓ Double portal: combination of portals [Belanger, Goudelis, JCP (2013)]

- ✓ DM spin: fermion, scalar, vector
- ✓ DM species: single-/two-/multi-component
- ✓ DM mass: light, heavy, light & heavy
- ✓ DM interaction: flavor-conserving (elastic),

flavor-changing (inelastic)

√ ???

Cosmic Probes of Dark Sector

Current Status of DM Searches

Simple Extension of ACDM

Simplified Two-Component DM

Two-Component DM: Assisted Freeze-out

[Belanger, **JCP**, JCAP (2012)] [Kamada, Kim, **JCP**, Shin, JCAP (2022)]

<u>"Assisted Freeze-out"</u> Mechanism

- ✓ Their relic abundances depend on the relative size of interactions.
- ✓ Heavier relic *χ*₂: hard to directly detect it due to tiny coupling to SM.
- ✓ χ_1 from χ_2 annihilation today: **boosted DM (BDM)** Agashe, Cui, Necib & Thaler JCAP [2014]

$$\frac{dY_{\chi_2}}{dx} = -\frac{\lambda_{\chi_2}(x)}{x} \left[Y_{\chi_2}^2 - \left(\frac{Y_{\chi_2}^{\text{eq}}(x)}{Y_{\chi_1}^{\text{eq}}(x)} \right)^2 Y_{\chi_1}^2 \right],$$

$$\frac{dY_{\chi_1}}{dx} = -\frac{\lambda_{\chi_1}(x)}{x} \left[Y_{\chi_1}^2 - \left(Y_{\chi_1}^{\text{eq}}(x) \right)^2 \right] + \frac{\lambda_{\chi_0}(x)}{x} \left[Y_{\chi_2}^2 - \left(\frac{Y_{\chi_2}^{\text{eq}}(x)}{Y_{\chi_1}^{\text{eq}}(x)} \right)^2 Y_{\chi_1}^2 \right]$$

$$\frac{dY_{\chi_1}}{dx} \simeq -\frac{\lambda_{\chi_1}(x)}{x} \left[Y_{\chi_1}^2 - \left(Y_{\chi_1}^{\text{eq}}(x) \right)^2 - Y_{\text{ast.}}^2(x) \right]$$

Two-Component DM: BDM Signatures

✤ BDM signal: detectable at large volume detectors

BDM Searches @ Neutrino Experiments

BDM=Hot DM?

★ BDM=hot DM → Strong constraints from cosmological evolution, structure formation, etc?

$$\checkmark \chi_2 \chi_2 \rightarrow \chi_1 \chi_1 \text{ Vs } \chi \chi \rightarrow \nu \nu$$

$$> n_{\chi_1} \propto \frac{\langle \sigma v \rangle_{\chi_2 \chi_2 \to \chi_1 \chi_1}}{m_2^2} \text{ with } \langle \sigma v \rangle_{\chi_2 \chi_2 \to \chi_1 \chi_1} \sim 10^{-26} \text{ cm}^3/\text{s}$$

✓ χ_2 : heavy DM, χ_1 : light DM

Self-Heating Effects?

1. The heavy χ_2 annihilates to light χ_1 which becomes boosted.

Self-Heating Effects!

- 1. The heavy χ_2 annihilates to light χ_1 which becomes boosted.
- 2. Sharing energies through selfinteraction $\sigma_{\chi_1}^{\text{self}}$ which increases the χ_1 temperature.

Large self-scattering is quite natural for light dark sector! For $g_{\chi_1} \approx O(1)$ & $m \approx O(10 \text{ MeV})$, $\sigma_{\chi_1}^{\text{self}} \approx \frac{g_{\chi_1}^4}{\pi} \frac{m_{\chi_1}^2}{m_{\text{med}}^4}$ $\Rightarrow \sigma_{\chi_1}^{\text{self}}/m_{\chi_1} \approx O(1 \text{ cm}^2/\text{g})$

Thermal Evolution

Perturbation Evolution

[J. Kim, Lim, **JCP** & Kong, 2312.07660]

Coupled equations for the density perturbation

$$\frac{d\delta_{2}}{dt} + \frac{\theta_{2}}{a} - 3\frac{d\Phi}{dt} = \frac{\langle \sigma v \rangle_{22 \to 11}}{m_{2} \dot{\rho}_{2}} \left(-\Psi \left(\ddot{\rho}_{2}^{2} - \frac{\ddot{\rho}_{2,eq}^{2}}{\rho_{1,eq}^{2}} \ddot{\rho}_{1}^{2} \left(2\delta_{2,eq} - \delta_{2} - 2\delta_{1,eq} + 2\delta_{1} \right) \right),$$

$$\frac{d\theta_{2}}{dt} + H\theta_{2} + \frac{\nabla^{2}\Psi}{a} = \frac{\langle \sigma v \rangle_{22 \to 11}}{m_{2} \rho_{2}} \frac{\ddot{\rho}_{2,eq}^{2}}{\rho_{1,eq}^{2}} \ddot{\rho}_{1}^{2} \left(\theta_{1} - \theta_{2} \right),$$

$$\frac{d\delta_{1}}{dt} + \frac{\theta_{1}}{a} - 3\frac{d\Phi}{dt} = -\frac{\langle \sigma v \rangle_{22 \to 11}}{m_{2} \rho_{1}} \left(-\Psi \left(\dot{\rho}_{2}^{2} - \frac{\ddot{\rho}_{2,eq}^{2}}{\rho_{1,eq}^{2}} \ddot{\rho}_{1}^{2} \right) - \dot{\rho}_{2}^{2} (2\delta_{2} - \delta_{1}) + \frac{\ddot{\rho}_{2,eq}^{2}}{\rho_{1,eq}^{2}} \dot{\rho}_{1}^{2} \left(2\delta_{2,eq} + \delta_{1} - 2\delta_{1,eq} \right) \right)$$

$$+ \frac{\langle \sigma v \rangle_{11 \to XX}}{m_{1} \bar{\rho}_{1}} \left(-\Psi \left(\dot{\rho}_{1}^{2} - \frac{\ddot{\rho}_{1,eq}^{2}}{\rho_{1,eq}^{2}} \right) - \dot{\rho}_{1}^{2} (2\delta_{2} - \delta_{1}) + \frac{\ddot{\rho}_{2,eq}^{2}}{\rho_{1,eq}^{2}} \dot{\rho}_{1}^{2} \left(2\delta_{2,eq} + \delta_{1} - 2\delta_{1,eq} \right) \right)$$

$$\frac{d\theta_{1}}{dt} + H\theta_{1} + \frac{\nabla^{2}\Psi}{a} + c_{s,1}^{2} \frac{\nabla^{2}\delta_{1}}{a} = \frac{\langle \sigma v \rangle_{22 \to 11}}{m_{2} \rho_{1}} \dot{\rho}_{2}^{2} \left(\theta_{2} - \theta_{1} \right),$$

$$\frac{d\theta_{1}}{dt} + H\theta_{1} + \frac{\nabla^{2}\Psi}{a} + c_{s,1}^{2} \frac{\nabla^{2}\delta_{1}}{a} = \frac{\langle \sigma v \rangle_{22 \to 11}}{m_{2} \rho_{1}} \dot{\rho}_{2}^{2} \left(\theta_{2} - \theta_{1} \right),$$

$$\frac{d\theta_{1}}{dt} + H\theta_{1} + \frac{\nabla^{2}\Psi}{a} + c_{s,1}^{2} \frac{\nabla^{2}\delta_{1}}{a} = \frac{\langle \sigma v \rangle_{22 \to 11}}{m_{2} \rho_{1}} \dot{\rho}_{2}^{2} \left(\theta_{2} - \theta_{1} \right),$$

Linear Matter Power Spectrum

[J. Kim, Lim, **JCP** & Kong, 2312.07660]

16

Linear power spectrum by CLASS

N-Body Simulation

 ◇ *N*-body simulations: twocomponent DM simulation
 built on *GADGET-3* to
 investigate the non-linear
 effects → There seem to be
 fewer sub-halos in the twocomponent Universe.

$$\checkmark \quad \frac{\sigma_1^{\text{self}}}{m_{\chi_1}} = 1 \text{ cm}^2/\text{g}$$

$$\checkmark \quad m_{\chi_2} = 30 \text{ MeV}$$

$$\checkmark \quad m_{\chi_1} = 5 \text{ MeV}$$

[J. Kim, Lim, **JCP** & Kong, 2312.07660]

N-Body Simulation: Observational Constraints

Maximum circular velocity distribution of sub-halos

[J. Kim, Lim, **JCP** & Kong, 2312.07660]

 \checkmark The number of sub-halos is more reduced

with smaller $m_{\chi_1} \& m_{\chi_2}$, larger $\sigma_1^{\text{self}}/m_{\chi_1}$.

N-Body Simulation: Observational Constraints

[J. Kim, Lim, **JCP** & Kong, 2312.07660]

- ✓ We perform a chi-square test using the maximum circular velocity distribution.
- ✓ Single-component limits ($r_1 \sim 1 \text{ or } r_1 \sim 0$) are disfavored.
- ✓ Larger $\sigma_{11\to 11}/m_{\chi_1}$ is favored.

◆Rising interest in the dark-sector (multi-particles) scenarios & BDM (Energetic DM)
◆BDM searches are promising & provide a new direction to explore the dark sector physics.
◆Multi-comp. CDM: changes in the thermal evolution → cosmic probes of the dark sector
◆The even MeV-scale DM can behave like WDM.

♦ Systematic cosmological studies including *N*-body simulations → interesting features!

Supplemental

N-Body Simulation: Future Studies

- ✓ How does the bound change if we include baryons in the simulation ?
- ✓ How does the bound change for different masses, m_{χ_1} and m_{χ_2} ?
- ✓ How does the bound change if we include the self-interaction of χ_2 ?
- ✓ What are other observables in the small scale structure?
- ✓ Is the bound compatible with direct detection experiments?

Constraints: *s***-wave Annihilating** χ_1 w/o Self-heating

[Kamada, H. Kim, JCP & Shin, JCAP (2022)]

Constraints: *p***-wave Annihilating** χ_1 w/o Self-heating

[Kamada, H. Kim, JCP & Shin, JCAP (2022)]

Cosmological Constraints & Dark Photon Searches

Various Ideas for DM

Dark Sector: DM Boosting Mechanisms

Boosted DM (BDM) coming from the Universe

DM Boosting Mechanisms: <u>Cosmic-Rays</u> (CRs)

Cosmic-Ray-Induced BDM

- ★ Energetic cosmic-ray-induced BDM: <u>energetic cosmic-rays</u> <u>kick DM</u> (large $E_{e^{\pm},p^{\pm},\text{He},\nu,\dots}$ → large E_{χ})
 - → Efficient for Light DM

- Charged CRs: [Bringmann & Pospelov, PRL (2019); Ema et al., PRL (2019); Cappiello
 & Beacom, PRD (2019); Dent & Dutta et al.,
 PRD (2020); Jho, JCP, Park & Tseng, PLB
 (2020); Cho et al., PRD (2020); more]
- CR ν (vBDM): [Jho, JCP, Park & Tseng,
 2101.11262; Das & Sen, 2104.00027; Chao, Li,
 Liao, 2108.05608; Lin, Wu, Wu, Wong,
 2206.06864; more]

BDM from astrophysical processes:
Solar evaporation - Kouvaris, PRD (2015)
Dark cosmic rays - Hu +, PLB (2017)
Solar reflection - An +, PRL (2018)
Solar acceleration - Emken +, PRD (2018)
Atmospheric collider - Alvey+, PRL (2019)
PBH evaporation - Calabrese +, PRD (2022)
Blazar jets - Wang +, PRL (2022)
Supernova shocks - Cappiello
more