

# THE UNIVERSITY OF CHICAGO

# Constraining dark matter models using dwarf galaxy properties

Ariane Dekker KICP Fellow

arXiv: 2407.04198





### Theoretical fit $\Lambda CDM$

10<sup>1</sup>

![](_page_2_Figure_1.jpeg)

![](_page_3_Figure_1.jpeg)

### ??

Various models predict deviations at small scales, impacting galaxy observations

![](_page_3_Picture_5.jpeg)

### Enhancements and suppressions in MPS

![](_page_4_Picture_2.jpeg)

Impacts formation of DM halos & galaxies

### Outline

![](_page_4_Picture_5.jpeg)

### Constrain MPS shape at small scales

![](_page_4_Picture_8.jpeg)

### Predictions for suppressed MPS

![](_page_5_Figure_1.jpeg)

### Examples

Warm dark matter (Lovell 2023) Ultra-light axion DM (Marsh 2016) Self-interactions (Berryman+2022)

![](_page_5_Picture_4.jpeg)

### Predictions for enhanced MPS

![](_page_6_Figure_1.jpeg)

### Examples

Massive vector boson DM (Graham+2015) Primordial magnetic fields (Ralegankar+2024) Non-standard inflation (Seleim+2020)

![](_page_6_Picture_4.jpeg)

![](_page_7_Figure_1.jpeg)

### Model-independent continuous tilt beyond pivot scale $k_p$ with spectral index $m_s$ $(m_s = n_s \approx 0.97 \text{ in } \Lambda \text{CDM}).$

![](_page_7_Picture_5.jpeg)

# Concentration of dark matter halos

![](_page_8_Figure_2.jpeg)

 $c(M, z) = R_{vir}(M, z)/r_s$ 

Models that enhance (suppress) the formation of structure form DM halo's at earlier (later) time with higher concentration.

### Small galaxies are dark matter-dominated!

![](_page_9_Picture_2.jpeg)

# Concentration impacts inner mass of galaxies $M_{tot}(< r_{1/2}) = M_{dm}(< r_{1/2}) + 0.5M_{\star}$

![](_page_9_Picture_6.jpeg)

### Inner mass of galaxies

### Small galaxies are dark matter-dominated!

![](_page_10_Picture_2.jpeg)

# Concentration impacts inner mass of galaxies $M_{tot}(< r_{1/2}) = M_{dm}(< r_{1/2}) + 0.5M_{\star}$

Observable with kinematic data ( $\sigma_{los}, R_{1/2}$ )

![](_page_10_Picture_6.jpeg)

### Inner mass of galaxies

### Small galaxies are dark matter-dominated!

![](_page_11_Picture_2.jpeg)

### Concentration impacts inner mass of galaxies

 $M_{tot}(< r_{1/2}) = M_{dm}(< r_{1/2}) + 0.5M_{\star}$ 

Observable with kinematic data ( $\sigma_{los}, R_{1/2}$ )

Model for each cosmological model

![](_page_11_Picture_8.jpeg)

![](_page_11_Picture_9.jpeg)

### Inner mass of galaxies

### Small galaxies are dark matter-dominated!

![](_page_12_Picture_2.jpeg)

# Concentration impacts inner mass of galaxies

 $M_{tot}(< r_{1/2}) = M_{dm}(< r_{1/2}) + 0.5M_{\star}$ 

Observable with kinematic data ( $\sigma_{los}, R_{1/2}$ )

Model for each cosmological model

![](_page_12_Picture_8.jpeg)

![](_page_12_Picture_9.jpeg)

![](_page_13_Figure_1.jpeg)

1) High-resolution Caterpillar simulations of 32 Milky-Way sized halos in  $\Lambda$ CDM. Griffen et al. (2016)

![](_page_14_Picture_2.jpeg)

High-resolution Caterpillar simulations of 32 1) Milky-Way sized halos in  $\Lambda$ CDM. Griffen et al. (2016)

Populate halos and subhalos with galaxies using 2) GRUMPY.

Manwadkar & Kravtsov 2023

![](_page_15_Figure_6.jpeg)

1) High-resolution Caterpillar simulations of 32 Milky-Way sized halos in  $\Lambda$ CDM. Griffen et al. (2016)

Populate halos and subhalos with galaxies using 2) GRUMPY.

Manwadkar & Kravtsov 2023

![](_page_16_Figure_4.jpeg)

### Halo-stellar mass

Manwadkar, Kravtsov 2022

High-resolution Caterpillar simulations of 32
Milky-Way sized halos in ΛCDM.
Griffen et al. (2016)

2) Populate halos and subhalos with galaxies using GRUMPY.

Manwadkar & Kravtsov 2023

![](_page_17_Figure_4.jpeg)

1) High-resolution Caterpillar simulations of 32 Milky-Way sized halos in  $\Lambda$ CDM. Griffen et al. (2016)

Populate halos and subhalos with galaxies using 2) GRUMPY.

Manwadkar & Kravtsov 2023

![](_page_18_Figure_4.jpeg)

## Milky Way dwarf galaxy observations

![](_page_19_Figure_1.jpeg)

### Model galaxies in $\Lambda CDM$ agree with observations

![](_page_20_Figure_1.jpeg)

![](_page_20_Picture_4.jpeg)

### Model galaxies in $\Lambda CDM$ agree with observations

![](_page_21_Figure_1.jpeg)

![](_page_21_Picture_4.jpeg)

### Exclude $(m_s, k_p)$ that deviate too much from $\Lambda$ CDM at 95% CL

![](_page_22_Figure_1.jpeg)

![](_page_22_Picture_4.jpeg)

![](_page_22_Picture_5.jpeg)

### Exclude $(m_s, k_p)$ that deviate too much from $\Lambda$ CDM at 95% CL

Rule out blue-tilt explanation early JWST observations of high-z massive galaxies. (Labbé+2023, Parashari+2023)

![](_page_23_Figure_2.jpeg)

![](_page_23_Picture_5.jpeg)

![](_page_23_Picture_6.jpeg)

![](_page_24_Figure_2.jpeg)

![](_page_24_Picture_3.jpeg)

![](_page_25_Picture_0.jpeg)

### Effective wavelength of DM halo concentration -1/3 $k \approx 134.5 \,\mathrm{Mpc}^{-1} \left(\frac{M}{10^8 M_{\odot}}\right)$

Smallest & largest galaxies in MW corresponds to  $k \sim 130, 13 \text{ Mpc}^{-1}$ .

### Matter power spectrum

![](_page_25_Figure_5.jpeg)

![](_page_25_Picture_6.jpeg)

### Primordial power spectrum

### Amplitude of primordial fluctuations

![](_page_26_Figure_3.jpeg)

![](_page_26_Picture_5.jpeg)

### Primordial power spectrum

### Significant large primordial fluctuations can induce GW signal.

### NANOGrav evidence for SGWBG between $k \sim 10^{6}, 10^{7} \text{ Mpc}^{-1}$ . SMBH or blue-tilt? (Afzal+2023)

![](_page_27_Figure_3.jpeg)

![](_page_27_Picture_5.jpeg)

# \* Correlation between galaxy inner mass and luminosity sensitive to the amplitude of the power spectrum.

\* Leading constraints on power spectrum at small scales.

\* Analysis can be applied to any model that produce any feature in the range of 13 Mpc<sup>-1</sup>  $\leq k \leq 130$  Mpc<sup>-1</sup>.

arXiv: 2407.04198

![](_page_28_Picture_5.jpeg)

![](_page_30_Figure_1.jpeg)

### Excluded at 95% CL

![](_page_30_Picture_3.jpeg)

![](_page_30_Picture_4.jpeg)

### Milky Way satellite galaxy observations

### 42 dwarf galaxies observations: velocity dispersion ( $\sigma_{los}$ ), V-band luminosity ( $L_V$ ) and half-light radii $R_{1/2}$ .

# $M_{tot} = 930\sigma_{\star,los}^2 R_{1/2} M_{\odot}$

![](_page_31_Figure_3.jpeg)

$$\ln \mathcal{L}(\theta) = \sum_{i,\text{obs}} \ln \left[ \int dt \right]$$

![](_page_32_Figure_1.jpeg)

$$\begin{split} \int \mathcal{P}(M_{\text{tot}}, L_V |, \theta) \frac{1}{\sqrt{2\pi} \sigma_{M_{\text{tot},i}}} \exp\left(-\frac{(M_{\text{tot}} - M_{\text{tot},i})}{2\sigma_{M_{\text{tot},i}}^2}\right) \\ & \times \frac{1}{\sqrt{2\pi} \sigma_{L_{V,i}}} \exp\left(-\frac{(L_V - L_{V,i})^2}{2\sigma_{L_{V,i}}^2}\right) dM_{\text{tot}} M_{\text{tot}} M_$$

![](_page_32_Figure_3.jpeg)

![](_page_32_Picture_4.jpeg)

## Concentration of dark matter halos

![](_page_33_Figure_1.jpeg)

Fourier transform of radius R collapsing into a halo (Chan+2017) Effective wavelength  $k \approx \frac{4.5}{R}$ Effective scale determining halo concentration (Diemer+2019)

Smallest galaxies in MW hosted by  $M = \frac{4\pi R^3 \bar{\rho}_m}{3} \sim 10^8 M_{\odot}$ corresponds to  $k \sim 100 \ {\rm Mpc}^{-1}$ 

# Concentration of dark matter halos

![](_page_34_Figure_2.jpeg)