Testing Primordial Black Holes Dark Matter with Gravitational Waves and Large Scale Structures cross-correlations

Based on Calore, Cuoco, Regimbau, Sachdev and Serpico, Phys.Rev.Res. 2 (2020), ArXiv: 2002.02466

Alessandro Cuoco

UNIVERSITÀ DEGLI STUDI DI TORINO

L'Aquila, Identification of DM (IDM 2024) July. 8th 2024

Gravitational Waves

 The detection of GWs by Ligo-Virgo opened a new window on the Universe

2

Primordial black holes DM

- Some fraction of the BBH seen by LIGO-Virgo could be primordial in origin
- Again, cross-correlations with LSS can help tackle the problem
- Primordial BHs and astro BHs have in general different biases w.r.t. LSS

Map of GWs

- In the next years number of detections and precision of localization will grow
- Auto-correlation statistics: performances very sensitive to the statistic available and angular precision
- Cross-correlation: exploit information from galaxy catalogs. More robust. Also less sensitive to the statistics and angular resolution
 4

Large Scale Structures

2MASS Galaxy Catalog

Large Scale Structures

Credits ESA

DM and Gamma rays: EGB

Fermi-LAT Gamma-Sky

cross-correlation with LSS: catalogues

- DM emission in the IGRB should trace the Large Scale Structures of the Universe.
- Galaxy Catalogues can be used as LSS template to cross-correlate with

Xia, Cuoco, Branchini, Viel, ApJS, 2015 Regis, Xia, Cuoco+ PRL 2015 Cuoco, Xia, Regis, + ApJS, 2015 Cuoco, Bilicki, Xia, Branchini, ApJS, 2017

Tomography of the IGRB via x-correlation with LSS

See also: Xia et al. MNRAS 2011, Ando, JCAP 2014, Ando, Benoit-Levy, Komatsu PRD 2014

Xia et al. ApJS, 2015 Cuoco et al. ApJS, 2017

- The different z-coverage of each catalogue allows to isolate the IGRB at different z effectively performing a Tomography of the IGRB
- This provides a strong handle to better separate components and eventually DM

Fermi-SDSS X-Correlation

Cross-correlation detected with a high significance (> 5 sigma)

Measured IGRB redshift distribution

 Exploiting the redshift information of the catalogs, a fine-binning tomography of the IGRB can be performed and the redshift distribution can be reconstructed

Dark Matter Interpretation

 A large DM contribution to the 2MASS correlation cannot be excluded, since, due to the peaking at low z, an high 2MASS correlation does not affect the correlations at higher z.

Dark Matter Constraints

- Limits on the DM contribution can be placed, although they depend on the DM Halo substructure modeling.
- They are, however, competitive even in the most conservative substructure boost scenario (i.e. no boost)

GW-LSS forecast

- Considering 3 cases:
 - HLV design sensitivity (~4000 BBH Events in 10 yr)
 - HLVIK design sensitivity (~20000 BBH Events in 10 yr)
 - 3G: Einstein Telescope+ 2xCosmic Explorer (1M BBH events up to z~5)
- Expected angular resolutions of the order ~0.1-1 deg

Calore, Cuoco, Regimbau, Sachdev and Serpico, Phys.Rev.Res. 2 (2020), ArXiv: 2002.02466

GW-LSS forecast

- The simulation gives the zdistribution for the observed GW events and for the 3 sub-classes BBHs, BNS, BH-NSs
- 2G will detect events up to z~0.6, while 3G up z~5

Calore, Cuoco, Regimbau, Sachdev and Serpico, Phys.Rev.Res. 2 (2020) 15

Theoretical predictions

Angular Power Spectrum of GW-LSS cross-correlation

$$C_{\ell}^{ab} = \int \frac{\mathrm{d}\chi}{\chi^2} W_a(\chi) W_b(\chi) b^a(z(\chi)) b^b(z(\chi)) P\left(k = \frac{\ell}{\chi}, z(\chi)\right)$$

Expected Error on the Angular Power Spectrum

$$\begin{split} \left(\frac{\delta C_{\ell}^{ab}}{C_{\ell}^{ab}}\right)^2 = & \frac{1}{(2\ell+1)\Delta\ell f_{\text{fov}}} \left[1 + \frac{C_{\ell}^{aa}C_{\ell}^{bb}}{(C_{\ell}^{ab})^2} \times \right. \\ & \left. \times \left(1 + \frac{C_N^{aa}}{W_{\ell,a}^2 C_{\ell}^{aa}} \right) \left(1 + \frac{C_N^{bb}}{W_{\ell,b}^2 C_{\ell}^{bb}} \right) \right] \end{split}$$

Angular resolution

- We performed a series of simulations of reconstruction of GW events to determine the angular resolution.
- There is a strong correlation between SNR and angular resolution which translates into a correlation with z.
- For large SNR resolutions up to 0.1 deg are achieved. Resolutions of ~1 deg are typical.

Results

 Prospects for the detection of the cross-correlation are good already with the current generation, especially with 5 detectors Results

EUCLID-HLVIK no z bins

EUCLID-HLVIK 3 z bins

- With future Galaxy surveys like Euclid is also possible to perform redshift tomography
- Tomography is particularly convenient and enhances the signal

Results: bias

 Combining 3G and future galaxy surveys it possible to determine the bias as function of z at about 10% precision, which should be enough to distinguish the primordial BHs case from the astro BHs case

Results: bias

- Already with the current generation the bias can be measured reasonable well giving discrimination capabilities
- Results from GW autocorrelation only are poor. The extra information from correlation with galaxies dramatically enhance the discrimination power.

- Cross-correlation with LSS is a promising tool to test the primordial BH DM scenario
- Cross-correlation is detectable with 10yr data taking of the current (2G) generation instruments
- Next generation (3G) should allow to perform precision studies (~ few %)

Credits: xkdc

Auto-Correlation of the CMB

$$I(\psi) = \sum_{\ell,m} a_{\ell m} Y_{\ell m}(\psi)$$
$$C_{\ell} = \langle |a_{\ell m}|^2 \rangle$$

Auto-Correlation of the Gamma-ray sky

 $I(\psi) = \sum a_{\ell m} Y_{\ell m}(\psi)$ ℓ,m $C_{\ell} = \langle |a_{\ell m}|^2 \rangle$

M.Fornasa, AC, et al. PRD 2016

Dark Matter

Chandra/Hubble

The Gravitational Wave Spectrum

Redshift resolution

- Redshift resolution typically of the order of 20%
- For some very well reconstructed event can go down to 1% or 0.1%

Catalogs z-distributions

29