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Primordial Black Hole phenomenology
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FIG. 2. Constraints on the fraction of DM in the form of PBHs fPBH, with mass MPBH, or in the form of compact objects, fCO,
with mass MCO for each of the di↵erent types of constraint. In each case the excluded regions are shaded. Top left: Evaporation
constraints on PBHs (Sec. III A): extragalactic gamma-ray background [55], CMB [153, 154], dwarf galaxy heating [155],
EDGES 21cm [156], Voyager e± [157], 511 keV gamma-ray line [158, 159] and the MeV Galactic di↵use flux [160]. Top
middle: Gravitational lensing constraints on compact objects (Sec. III C): stellar microlensing (MACHO [161], EROS [12],
OGLE [162], HSC [163]), Icarus lensing event [164], and supernovae magnification distribution [165]. Top right: Constraints
on PBHs from gravitational waves (Sec. III D) produced by individual mergers [166, 167] and the stochastic background of
mergers [168]. Note that there are substantial uncertainties on GW constraints, arising from the possible disruption of PBH
binaries. Bottom left: Dynamical constraints on compact objects (Sec. III E): from dwarf galaxies [169] and wide binaries [170].
Bottom right: Accretion constraints on PBHs (Sec. III F): CMB [171], EDGES 21cm [172], X-ray [173], radio [173], and dwarf
galaxy heating [174]. Digitised bounds and plotting codes are available online at PBHbounds.

B. Interactions with stars

Asteroid mass PBHs can potentially be constrained by the consequences of their capture by, and transit through,
stars [179–182]. See Ref. [182] for detailed recent calculations and discussion.

As a PBH passes through a star it loses energy by dynamical friction, and may be captured. A captured PBH will
sink to the centre of the star and also accrete matter, potentially destroying the star. A large capture probability
requires a large DM density and low velocity dispersions. Stellar survival constraints have been applied to globular
clusters [179]. However, as emphasised by Ref. [180], (most) globular clusters are not thought to have a high DM
density. Moreover, Ref. [182] argues that the survival of stars does not in fact constrain the PBH abundance, but
that the disruption of stars may lead to constraints, if the observational signatures are worked out (see Ref. [183] for
work in this direction).

The transit of a PBH through a carbon/oxygen white dwarf will lead to localized heating by dynamical friction,
which could ignite the carbon and potentially cause a runaway explosion [181, 182]. Reference [182] again finds that
the survival of white dwarfs does not constrain fPBH, but if white dwarf ignition by a PBH leads to a visible explosion
there could be constraints.
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Accretion bounds

• Primordial Black Holes can accrete 
baryonic matter

• Astronomical environments: X-ray/
radio bounds (focus on Galactic center) 

• Cosmological bound: for instance from 
Cosmic Microwave Background (focus 
on accretion during the Dark Ages) 

• They rely on complicated accretion 
physics 

• Comprehensive assessment of the 
uncertainties is very much needed! 
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PBH constraintsWhy a sub-dominant population would matter?
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• A discovery of a sub-dominant population of DM in the form of (massive) 
PBHs could: 

• Solve the problem of the SMBH seed? 

• Reveal non-trivial early universe physics 

• Help us set stringent upper limits on other DM candidates
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(UCMHs) have ⇢(r) / r
�9/4 density profiles, which has

been confirmed by recent 3D simulations [16]. Since fPBH

is at or well below the percent-level in all but one of our
detection scenarios, we can assume that UCMHs form in
isolation, so we neglect the e↵ects of PBH-PBH interac-
tions on the UCMH profile.

Due to the steepness of the profile the DM density
reaches a maximum value at the “annihilation plateau”,
where the DM annihilation rate becomes equal to the
Hubble rate. Due to the large resulting gamma-ray lu-
minosities, UCMHs in the Milky Way would appear as
bright point sources with no counterparts in other wave-
lengths. Previous analyses searching the 3FGL for DM
subhalos [60–62] have identified 19 bright, high-latitude,
non-variable unassociated point sources that are spec-
trally compatible with annihilating DM. As described in
detail in Appendix A, we perform a Monte Carlo simula-
tion to assess the observability of UCMHs by Fermi. We
then use this to determine the 95% confidence level (CL)
upper bound on the WIMP annihilation cross-section in
the zero-velocity limit (�vrel)0. This upper limit depends
on the PBHs’ spatial distribution which we assume tracks
the Milky Way DM distribution. We fix fPBH to the 5th
percentile of the posterior P (fPBH|N), derived in the pre-
vious sections for the detection of N PBH candidates.
We conservatively assume that all 19 compatible unasso-
ciated point sources are UCMHs and set the upper limit
on (�vrel)0 by comparing with the expected number of
UCMHs passing cuts on their integrated gamma-ray flux
and galactic latitude (given MPBH, m� and N).

Annihilation in UCMHs outside the Milky Way over all
redshifts contributes to the di↵use, isotropic extragalac-
tic background (EGB) [63–65], which has been measured
by Fermi [66]. This provides an additional very robust
constraint on the DM self-annihilation cross section since
it requires no assumptions about the PBH spatial distri-
bution. To set a conservative bound we do not assume a
particular background model. Instead, we compute the
expected gamma-ray flux from UCMHs in each of Fermi’s
energy bins, and calculate the likelihood of such an excess
above the observed flux using the statistical and system-
atic uncertainties. As for the point source constraints,
we fix fPBH to the 5th percentile for a given detection
scenario.

An important di↵erence with regard to standard indi-
rect detection analyses is the scaling of signals with the
fractional WIMP abundance f� = ⌦�/⌦DM for under-
abundant thermal relics. Typically, the DM annihilation
rate depends on the combination f�

2(�vrel)0 since it fac-
tors into terms dependent on the integrated DM density
profile squared (J-factor) and the self-annihilation cross
section. In the PBH scenario, the DM density profile it-
self depends on (�vrel)0 since this sets the radius of the
annihilation plateau. As a result, the DM annihilation
rate (and thus the extragalactic di↵use flux from PBHs
and expected number of unassociated point sources) de-
pends on the combination f�

4(�vrel)0; this is derived in
Appendix A.
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FIG. 2. Constraints on DM self-annihilation cross sec-

tion. The solid lines correspond to the 95% CL upper limits
obtained assuming a small number of PBH detections with
LIGO/Virgo O3 (blue), Einstein Telescope (ET, orange) and
SKA (green). The lower dashed lines correspond to con-
straints which would be obtained if the number of PBH ob-
servations are as large as allowed by current limits. The dark
grey region is the envelope of 95% CL profile likelihood con-
tours for several supersymmetric models, while the light grey
region is for singlet scalar scenarios. The horizontal dotted
black line indicates the standard thermal relic cross section
3⇥10�26 cm3/s. The angled dotted black line shows the lower
bound from unitarity for s-wave annihilation. �

Results and discussion. For each detection scenario in
Table I we show as function of WIMP mass the 95% CL
upper limit on f
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�(�vrel)0 in Fig. 2, where f� = ⌦�/⌦DM

is the fractional contribution of a particle species to the
cosmic DM density. This allows us to compare our pro-
jections with the theoretical predictions in cases where
new particles constitute only a subdominant component
of DM. The colored curves show the most stringent con-
straint arising from gamma-ray observations at a given
WIMP mass, assuming annihilation into b̄b. For our pro-
jected limits assuming a small number of PBH detections
(solid lines), point source constraints dominate at low
WIMP mass, while di↵use constraints are more relevant
at high mass. This can be seen as a ‘kink’ in each of
the solid lines, above which di↵use constraints dominate.
For larger numbers of PBH detections (dashed lines), dif-
fuse constraints generally dominate (see Appendix A for
a more detailed comparison of the limits).

We find that a detection of O(10) PBHs with any of the
methods described above would rule out large ranges of
standard-model extensions with stable relics at the elec-
troweak scale. To illustrate this, we show in dark grey the
envelope of the 95% CL profile-likelihood contours for the
MSSM7 [67] and various GUT-scale SUSY models [68]
obtained by the GAMBIT collaboration. In light grey,
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Accretion physics: Bondi formalism.
Continuity equation for steady-state flow

4. ACCRETION PHYSICS OF ISOLATED BLACK HOLES

2) Temperature-limited case: Object at rest, cloud spherically accreting

r
~v

Figure 5: Schematic of the
temperature-limited case. A cloud
of gas accretes spherically onto an
object represented by the black dot.
The shading gives an indication for the
density of the gas: darker is denser. The
dotted ring at radial distance r from the
object gives an intuition for equation
10. For this, also the velocity ~v and the
inward flux (gray arrows) of the gas have
been indicated.

The second case considered is that the object is at rest and an infinite cloud of gas
accretes steadily and spherically symmetric onto the object. This scenario is depicted in
figure 5 and has first been considered by [78]. Following [79], the accretion rate can be
derived as follows. Starting from the continuity equation and making the assumption of
a steady flow (@⇢/@t = 0) and spherical symmetry (~v = vr̂), we get:

@⇢

@t
+ ~r · (⇢~v) = 0 !

1

r2
@

@r

�
r2⇢v

�
= 0. (9)

This implies that the combination r2⇢v is constant as a function of the radial distance,
and thus the same everywhere. Integrating the right side of equation 9 over a sphere of
radius r we obtain the accretion rate Ṁ ,

Ṁ = 4⇡r2⇢(�v), (10)

where we included a minus sign in the definition of Ṁ to make it positive, since we have
v < 0 for accreting gas. Similar to the accretion rate of last paragraph, this equation
simply states that the accretion rate is the inward flux of mass ⇢(�v) through the surface
4⇡r2 of a sphere with radius r. Since Ṁ is independent of r, we can relate it to the
ambient values of the density and sound speed by evaluating Ṁ at the sonic radius rs.
For this we first need to relate the density and sound speed of the gas at the sonic radius
to their ambient values.

To this end, starting with the Euler equation and again using the assumptions of
steady flow (@~v/@t = 0) and spherical symmetry (~v = vr̂) we have:

⇢
@~v

@t
+ ⇢

⇣
~v · ~r

⌘
~v = �~rP + ~f ! ⇢v

dv

dr
= �

dP

dr
�

GM⇢

r2
(11)

where we used gravity for the force density term, ~f = �(GM⇢/r2)r̂, and consequently
only considered the radial component. With some algebraic manipulation and the def-

inition of the sound speed, cs = (dP/d⇢)1/2
0

, this equation can be rewritten in a more
convenient form:

✓
1 �

c2s
v2

◆
d(v2)

dr
= �

2GM

r2

✓
1 �

2c2sr

GM

◆
. (12)
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Euler equation
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For this we first need to relate the density and sound speed of the gas at the sonic radius
to their ambient values.

To this end, starting with the Euler equation and again using the assumptions of
steady flow (@~v/@t = 0) and spherical symmetry (~v = vr̂) we have:

⇢
@~v

@t
+ ⇢

⇣
~v · ~r

⌘
~v = �~rP + ~f ! ⇢v

dv

dr
= �

dP

dr
�

GM⇢

r2
(11)

where we used gravity for the force density term, ~f = �(GM⇢/r2)r̂, and consequently
only considered the radial component. With some algebraic manipulation and the def-

inition of the sound speed, cs = (dP/d⇢)1/2
0

, this equation can be rewritten in a more
convenient form:

✓
1 �

c2s
v2

◆
d(v2)

dr
= �

2GM

r2

✓
1 �

2c2sr

GM

◆
. (12)

16

4. ACCRETION PHYSICS OF ISOLATED BLACK HOLES

(dP/d⇢)1/2
0

, and the polytropic equation P = K⇢� , we know that c2s = K�⇢��1. Plugging
this back into the right-hand side of equation 15 gives

⇢(rs) = ⇢(1)

✓
2

5 � 3�

◆ 1

��1

.

Turning back to Ṁ in equation 10, evaluating it at the sonic radius and substituting
in the above expressions for rs, cs(rs) and ⇢(rs), we get the accretion rate

Ṁ = 4⇡r2s⇢(rs)cs(rs) = ⇡
(GM)2⇢(1)

c3s(1)

✓
2

5 � 3�

◆ 5�3�
2(��1)

. (16)

The last factor is of order unity and ranges from 1 to 4.5. For a typical value of the
adiabatic index � = 1.4 the prefactor is 2.5. This concludes the calculation of steady
spherically symmetric accretion, known as Bondi accretion. Note that the di↵erence to
the previous case, apart from a numerical factor, is that the accretion is suppresed by
the sound speed instead of the velocity. Since cs / T 1/2 from the ideal gas law, this case
is also termed the temperature-limited case.

Both cases are equally valid, but their relative contribution depends on the velocity
and the sound speed. To arrive at the accretion rate for intermediate cases, where cs ⇠ v,
Bondi conjectured equation 4, which clearly holds for both limits cs � v and cs ⌧ v.
Later numerical calculations [80] actually showed there should be an extra factor of two
in this equation, allowing for a numerical agreement with the velocity-limited case [81].

To recap, the main assumptions going into Bondi accretion are a steady flow and
spherical symmetry. Hoyle-Lyttleton accretion then takes into account the possibility of
a relative velocity between the object and the accreting gas. Therefore, the Bondi-Hoyle-
Lyttleton accretion rate would be a good approximation for the realistic scenario of an
isolated object accreting from interstellar gas. For this scenario to remain spherically
symmetric it is also important that the object has a negligible angular momentum and
magnetic field strength [79].

Besides these crucial assumptions, there are some more issues worth considering
when applying the Bondi-Hoyle-Lyttleton accretion rate to this scenario. One, a drag
force due to dynamical friction of the object moving relative to the gas slows down
the object, eventually reducing Bondi-Hoyle-Lyttleton accretion to just the spherically
symmetric Bondi accretion. Two, the wake of gas piling up behind the object would
form an unstable column with shock fronts altering the flow of accretion onto the object.
Three, a non-uniform density or velocity of the gas has a non-zero angular momentum
around the object and could therefore transfer this angular momentum to the object,
breaking down the assumption of spherical symmetry. Four, accretion onto the object
inevitably gives rise to radiative feedback, which might alter the accretion rate in a
significant way. And five, when considering accretion onto a black hole or neutron star,
relativistic e↵ects will become important and needs to be taken into account. See [81]
and references therein for a general discussion on these issues.

Concluding this section, the Bondi-Hoyle-Lyttleton accretion rate is the first attempt
at tackling the accretion problem. Equation 4 seems to capture the main dependences
of the accretion rate: a square dependence on the mass, a linear dependence on the gas
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4 Accretion Physics of Isolated Black Holes

For testing PBHs as a dark matter candidate through their radio and X-ray emission,
the accretion physics of black holes play a vital role. Therefore, a basic understanding
of the relevant concepts is required before moving on. This section will be dedicated
to give a brief picture of the accretion physics of isolated black holes accreting from a
constant gas density. To this end, this section is structured in the following way.

First, the concept of Bondi-Hoyle-Lyttleton accretion will be described and derived
in section 4.1. Then in section 4.2 the concept of radiative e�ciency will be introduced.
Next, in section 4.3, the radiative feedback and in particular the idea of a Strömgren
sphere will be discussed. This is followed by a brief discussion in section 4.4 on disk
accretion scenarios accurate for observed accreting systems. The last subsection, section
4.5, will introduce the empirical fundamental plane relating the X-ray luminosity, radio
luminosity and mass of black holes.

4.1 Bondi-Hoyle-Lyttleton Accretion

The first attempt at describing the accretion of gas onto an object was done by Bondi,
Hoyle and Lyttleton in three consecutive works [76, 77, 78]. This resulted in the famous
Bondi-Hoyle-Lyttleton accretion rate:

ṀBHL = 4⇡
(GM)2⇢1

(v2 + c21)3/2
(4)

Here Ṁ is the accretion rate, G is the gravitational constant, M and v are respectively
the mass and velocity of the accreting object, and c1 and ⇢1 are respectively the sound
speed and density of the accreting gas at infinity.

Equation 4 is actually a composition of two equations, each considering the accretion
rate in a specific case. The two cases considered are 1) a gas cloud is at rest and an
object moves through the cloud with a constant velocity [76, 77], and 2) an object is at
rest and the gas accretes steadily and spherically symmetric onto the object [78]. In the
following two parts of this section the accretion rate for both cases will be derived.

1) Velocity-limited case: Cloud at rest, object moving through cloud

O
�

~v

dC

Figure 4: Schematic of the velocity-limited case. An object O moves with constant velocity ~v
through a cloud of gas. The gas particles with impact parameter � follow hyperbolic trajectories
(solid lines) colliding at point C, a distance d from the object. These particles will eventually
accrete if their velocities are insu�cient to escape the gravitational attraction of the object.
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H. Bondi, MNRAS 112(2):195–204, 1952  

H. Bondi and F. Hoyle, MNRAS 104(5):273–282, 1944 Moving BH: Bondi-Hoyle-Littleton 
accretion rate
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BH at rest: Bondi accretion rate
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Accretion physics: Bondi formalism

• Perna et al. 2003, “Bondi accretion and the problem of missing isolated neutron stars” 
• S. Pellegrini 2005, “Nuclear Accretion in Galaxies of the Local Universe: Clues from Chandra 

Observations”  (explanation for the radiative quiescence of supermassive black holes in the local 
Universe) 

• Wang et al. 2013, “Dissecting X-ray-emitting Gas around the Center of our Galaxy” 

Bondi-Hoyle-Littleton formula needs to be “fudged” because of observational 
constraints related to local neutron stars, the SMBH at the center of the Galaxy, and 
AGNs. 

2

radio and X-ray constraints on the gas density around
Sgr A*, the supermassive BH at the center of the Galaxy,
the least luminous accreting BH observed to date (in
Eddingtion units), and thus a well-studied source from
the point of view of weak accretion physics [24–26]. We
compute the accretion rates and the radiative e�ciencies
of a Galactic population of PBHs in the low-e�ciency
limit, following the formalism presented in [27, 28]. We
take into account the findings of previous studies regard-
ing accretion of interstellar gas onto isolated black holes
[29–31].
We model the radiative e�ciency ⌘, defined by the

relation for the bolometric luminosity LB = ⌘Ṁc2, as
⌘ = 0.1Ṁ/Ṁ crit for Ṁ < Ṁcrit (if we were to assume
instead e�cient accretion above the critical rate, Ṁ >
Ṁcrit, then we would have a constant ⌘ = 0.1). As already
discussed, all our sources fall below this critical accretion
rate, such that they are all ine�cient accretors: this
means the luminosity scales non-linearly with accretion
rate, L / Ṁ2.
We parameterize the accretion rate as Ṁ = �ṀBondi,

such that

Ṁ = 4⇡�(GMBH)2⇢
�
v2
BH

+ c2
s

��3/2

(1)

where G is the gravitational constant, vBH is the veloc-
ity of the BH, and cs is the sound speed of the accreted
gas, which is below 1 km/s in cold, dense environments.
An important element that needs consideration is the

temperature of the accreted gas due to radiative pre-
heating [27]. Photoionising radiation will lead to an
ionisation bubble surrounding the source, known as the
Strömgren sphere [32], with a characteristic radius, RStr.
In the following, we assume that the gas around the BH
is fully ionized – and therefore, we set cs = 10 km/s – if
the timescale for the ionization of the Strömgren sphere is
shorter than the timescale associated with the incoming
flux of fresh, unprocessed material.

Regarding �, we choose a reference value of 0.02. Given
the degeneracy between � and the angular momentum
and temperature of the accreted gas, this value is consis-
tent with isolated neutron star population estimates and
studies of active Galactic nuclei accretion [16, 17, 26]
This prescription is the same as that adopted by [28];

however, we consider MBH = 30 M�, and rescale the
value of Ṁ crit = 0.01 ṀEdd used in that work across the
full 10–100 M� mass range.

We convert bolometric luminosity to X-ray luminosity
via the approximate factor LX ' 0.3LB following [28].

Motivated by the results presented in [33] and by
the discussion in [27, 28], we assume the presence of a
jet – thus requiring a system with a surplus of angular
momentum, or a dynamically important magnetic field
combined with a spinning black hole – emitting radio
waves in the GHz domain with an optically thick, almost

flat spectrum, whilst the X-ray emission is non-thermally
dominated, originating from optically thin regions closer
to the BH. In order to convert the X-ray luminosity into a
GHz radio flux, we adopt the universal empirical relation
discussed e.g. in [34], also known as the fundamental
plane (FP), which applies for a remarkably large class of
compact objects of di↵erent masses, from X-ray binary
systems to active Galactic nuclei. We calculate the X-ray
luminosity in the 2–10 keV band in accordance with
the FP, assuming a hard power-law X-ray spectrum
with photon index ↵, and a typical range for hard state
X-ray binaries of 1.6–2.0 (see [35]). We extrapolate this
power-law spectrum into the 0.5–8 keV and 10–40 keV
bands in order to also make comparisons with Chandra
and NuSTAR catalogs. We then use the FP relation
to calculate the 5 GHz radio flux from the 2–10 keV
X-ray flux and assume a flat radio spectrum, such that
F5GHz = F1.4GHz, allowing direct comparison with the
1.4 GHz source catalog from a VLA survey of the GC
region.

Primordial black hole population: In order to de-
rive a bound from X-ray and radio data, we set up a
Monte Carlo simulation for each PBH mass, assuming a
delta mass function.
We populate the Galaxy with PBHs following the

Navarro-Frenk-White (NFW) distribution [36] (other
more conservative choices are discussed below). We imple-
ment the accurate 3D distribution of molecular, atomic,
ionized gas in the inner bulge presented in [15]; that dis-
tribution includes a detailed model of the 3D structure of
the Central Molecular Zone (CMZ), a 300 pc wide region
characterized by large molecular gas density and centered
on the GC, i.e. in the region where the largest density of
PBHs is expected.
For each PBH, the velocity is drawn randomly from

a Maxwell-Boltzmann distribution. The characteristic
velocity of the distribution is position-dependent. The
velocity distribution at a given radius is a crucial ingredi-
ent, because the accretion rate scales as v�3, eq. (1). In
order to derive such a distribution, we consider the recent
state-of-the-art model for the mass distribution in the
Milky Way described in [37], where 6 axis-symmetric
components are taken into account (bulge, DM halo,
thin and thick stellar discs, and HI and molecular gas
discs). We then assume that the velocity distribution
at a distance R from the GC is a Maxwell-Boltzmann
with vmean = vcirc(R) =

p
(GM(< R)/R). Under the

assumption of isotropic orbits1, an exact computation of
the phase-space density could be performed by means of

1
We verified that, in the high-resolution Aquarius N-body simula-

tions, the anisotropy parameter � = 1� �t/�r is consistent with

0 in the whole range of radii we are interested in, therefore the

assumption of isotropic orbits is solid.

The fudge factor takes into account several effects, including the role of outflows



L’Aquila - July 2024 7

The Cosmological Accretion Bound
The physics behind the bound

• PBHs accrete baryonic matter during the Dark Ages. 

•   The accretion rate depends on ambient density and 
PBH - baryon relative speed. 

•  Ambient density dilutes with decreasing redshift 

•  PBH speed relative to baryons decreases according to 
linear theory (DM does not suffer Thompson scattering) 

FIG. 1. Recreating the plots in Francesca’s Thesis: behaviour of the PR accretion rate as a function
of relevant parameters. (Plot made by Greg)

Behaviour of the accretion rate with redshift

• The density of the surrounding gas as a function of redshift is stated in Poulin/Serpico

[7] (Eq. (5)) [FS: putting this equation back in the standard form to make it more

immediately readable],

⇢1 = mp n1 ⇡ mp 200 cm
�3

✓
1 + z

1000

◆3

, (2)

where mp is the mass of the proton.

• The speed of sound is also stated in Poulin/Serpico [7] (Eq. (3)),

cs,1 =

s
�(1 + xe)T

mp

⇡ 6

r
1 + z

1000
(km/s), (3)

where � is the polytropic equation of state coe�cient for a mono-atomic ideal gas (in

our case � is taken to be 1). The latter formula is less accurate and obviously does

3

Hu, Sugiyama 9407093 
Tseliakhovich+ 1005.2416 
Dvorkin+ 1311.2937
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There is no exact computation of the accretion rate
accounting for the finite sound speed and a displace-
ment of the accreting object. However, as argued by
Bondi in Ref. [67], a reasonable proxy can be obtained
by the quadratic sum of the relative velocity and the
sound speed at infinity, which leads to an e↵ective veloc-
ity v

2

e↵
= c

2

s,1 + v
2

rel
. We thus define the Hoyle-Bondi

radius and rate2

ṀHB ⌘ 4⇡� ⇢1ve↵r
2

HB
⌘ 4⇡� ⇢1

(GM)2

v
3

e↵

. (6)

Despite the fact that the Bondi analysis was originally
limited to spherical accretion, this formalism is com-
monly used to treat non-spherical cases, with e.g. for-
mation of an accretion disk, by choosing an appropriate
value for �. Although it has been shown for instance
that the simple analytical formulae can overestimate ac-
cretion in presence of vorticity [69] or underestimates it
in presence of turbulence [70], typically Eq. (6) provides
a reasonable order-of-magnitude description of the simu-
lations (see for instance [71] for a recent simulation and
interpolation formulae).

B. Relative baryon-PBH velocity and disk
accretion in the early universe

In the cosmological context, one might naively esti-
mate the relative velocity between DM and baryons to
be of the order of the thermal baryon velocity or of the
speed of sound, Eq. (3). In that case, the appropriate
accretion rate would be the Bondi one, Eq. (2). The sit-
uation is however more complicated, since at the time of
recombination the sound velocity drops abruptly and the
baryons, which were initially tightly coupled to the pho-
tons in a standing acoustic wave, acquire what is an even-
tually supersonic relative stream with respect to DM,
coherent over tens of Mpc scales. In linear theory, one
finds that the square root of the variance of the relative
baryon-DM velocity is basically constant before recom-
bination and then drops linearly with z [72, 73]:

q
hv2

L
i ' min


1,

1 + z

1000

�
⇥ 30 km/s . (7)

Yet, this is a linear theory result, and it is unclear if it
can shed any light on the accretion, which depends on
very small, sub-pc scales (Bondi radius, see Eq. (4)). In
Ref. [72], the authors first studied the problem of small-
scale perturbation growth into such a configuration, by
a perturbative expansion of the fluid equations for DM,
baryons, and the Poisson equation around the exact solu-
tion with uniform bulk motion given by Eq. (7), further

2
Actually, our rate definition is a factor 2 larger than the original

proposal, but has been confirmed as more appropriate even with

numerical simulations, see Ref. [68].

assuming zero density contrast, and zero Poisson poten-
tial. Their results suggest that small-scale structure for-
mation and the baryon settling into DM potential wells is
significantly delayed with respect to simple expectations.
Equation (7) has also entered recent treatments of the
Hoyle-Bondi PBH accretion rate, see Ref. [58], yielding a
correspondingly suppressed accretion. In particular, by
taking the appropriate moment of the function of velocity
entering the luminosity of accreting BH over the velocity
distribution, Ref. [58] found

ve↵ ⌘

⌧
1

(c2
s,1 + v

2

L
)3

��1/6

'

r
cs,1

q
hv2

L
i , (8)

with the last approximation only valid if cs,1 ⌧
p

hv2
L
i,

which is acceptable at early epochs after recombination,
of major interest in the following.

The application of the above perturbative (but non-
linear) theory to the relative motion between PBH and
the baryon fluid down to sub-pc scales appears prob-
lematic. A first consideration is that the behavior of
an ensemble of PBH of stellar masses is very di↵erent
from the “fluid-like” behavior adopted for microscopic
DM candidates like WIMPs. The discreteness of PBHs
is associated to a “Poissonian noise”, enhancing the DM
power spectrum at small scale, down to the horizon for-
mation one [74–77]. Our own computation suggests that
a density contrast of O(1) is attained at z ' 1000 at
a comoving scale as large as kNL ⇠ 103 Mpc�1 for a
population of 1M� PBH whose number density is com-
parable to the DM one. Even allowing for fudge factors
(e.g. fPBH ⇠ 0.1, di↵erent mass) the non-linearity scale
is unavoidably pertinent to the scales of interest. In fact,
the PBH formation mechanism itself is a non-linear phe-
nomenon, and peaks theory suggests that PBH are likely
already born in clusters, on the verge of forming bound
systems [75, 78]. Our first conclusion is that the ap-
plication of the scenario considered in Refs. [72, 73] to
the PBH case is not at all straightforward. In particu-
lar, a more meaningful background solution around which
to perturb would be the one of vanishing initial baryon
perturbations in the presence of an already formed halo
(and corresponding gravitational potential) at a scale
kNL

>
⇠ 103 Mpc�1. A second caveat is that the treat-

ment in Refs. [72, 73] uses a fluid approximation, i.e. it
does not account for “kinetic” e↵ects such as the ran-
dom (thermal) velocity distribution around the bulk mo-
tion velocity given by Eq. (7). One expects that “cold”
baryons (statistically colder than the average) would al-
ready settle in the existing PBH halo at early time,
forming a virialized system—albeit still under-dense in
baryons, with respect to the cosmological baryon to DM
ratio. One may also worry about other e↵ects, such as
shocks and instabilities, which may hamper the applica-
bility of the approach of Ref. [72] to too small scales and
too long times.

Assuming that the overall picture remains neverthe-
less correct in a more realistic treatment, we expect that
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The physics behind the bound

• Accretion disks emits ionizing radiation during the Dark 
Ages (between Recombination and Reionization):  

• IGM is heated up (alteration of TM) 
• IGM is also partially ionized (alteration of the free 

electron fraction Xe) 
7

FIG. 1. Free electron fraction, xe, as a function of redshift, including the contribution of a monochromatic PBH population
with mass MPBH = 100M�, for di↵erent PBH dark matter fractions fPBH =

�
10�2, 10�3, 10�4,. 10�4

�
. The standard

scenario with fPBH = 0 is denoted by the solid black line. We use fiducial astrophysical parameters: (⇣UV, ⇣X, Tmin, N↵) =�
50, 2⇥ 1056 M�1

� , 5⇥ 104 K, 4000
�
; see Section IV.1.

The aforementioned modifications to the free electron fraction, temperature of the gas, and Lyman-↵ flux are
incorporated by modifying the publicly available codes cosmorec/Recfast++ [159–161], relevant at high redshifts
when astrophysical mechanisms can be neglected, and 21cmFAST [162], relevant at low redshifts when astrophysical
mechansims, such as ionization and heating from stars and X-ray binaries, are relevant. Figures 1 and 2 show the
redshift evolution of the free electron fraction and the kinetic gas temperature for a population of PBHs with mass
MPBH = 100M� and di↵erent relative abundances fPBH.2 Notice that the e↵ect of PBHs accretion on the free electron
fraction in Fig. 1 is clearly visible: the presence of the extra heating and ionization terms from PBHs accretion changes
the redshift evolution of xe, increasing this quantity from the early recombination era, below z ⇠ 1000, until the late
reionization era. The kinetic gas temperature would also be increased by the presence of the energy injection in the
IGM (see Fig. 2). Similar to the case in which there is energy injection from dark matter annihilations [99, 101], PBH
accretion leads to an earlier and more uniform heating of the IGM, which is larger for an increasing fraction of dark
matter in the form of PBHs, until stellar sources turn on and start to ionize the medium (around z ⇠ 15 in Fig. 1).3

These results illustrate that even small abundances of PBHs could have dramatic e↵ects on the properties of the IGM.
Before continuing, we would like to emphasize that the treatment of accretion adopted in this work is rather

conservative. For the redshifts relevant for 21cm cosmology, the conditions necessary for the formation of accretion
disks around PBHs seem likely. Within the context of disk accreting models, ADAF accretion is among the lowest
in the radiative e�ciency of X-rays. Adopting a larger radiative luminosity or accretion rate would correspondingly
enhance the observable signatures associated with global heating and ionization of the IGM.

2
This range of values is simply intended to illustrate the dependence of these observables on fPBH. Note that the cases with the largest

abundances are in tension with CMB constraints [85].
3
Note that although the spatial and redshift PBH distribution follows that of matter, it is di↵erent from the distribution of X-ray sources,

i.e., star-forming halos beyond a threshold for atomic cooling.

Mena+ 1906.07735

RecombinationReionization

particles will decay producing a primary spectrum of stable particles whose interaction with
the cosmological plasma need to be accurately followed. Like in most of the literature, we
restrict the analysis to the impact of injected positrons, electrons and photons. Indeed, neu-
trinos are basically invisible to the medium and simply carry away part of the energy. On the
other hand, protons and antiprotons have been checked to loosen the bounds by about 10%,
[36]. Thus neglecting them only leads to slightly too conservative bounds, while permitting
a significant reduction of the computing time.

Typically, the injected primary particles initiate an e.m. cascade by interacting with
thermal photons, producing an increase in the number of non-thermal particles at the expense
of a decrease in their average energy. When these extra particles cool down to energies of the
order of a keV, they start interacting strongly with atoms of hydrogen (and sub-dominantly
of helium [17]). To account for the ionization, excitation and heating of these atoms, we have
to modify the equations governing the evolution of the fraction of free electrons, xe © ne/nH ,
taking into account both direct ionization and collisional excitation followed by photoioniza-
tion by a CMB photon. At the same time, we must add to the equation for the evolution of
the intergalactic medium (IGM) TM a term accounting for the associated heating, which has
a feedback on the evolution of xe. Finally, at some point, the energy of the extra particles
drops below the Lyman-– transition energy (10.2 eV). Then these particles are no longer able
to interact with atoms and can be considered as “lost”. The three-level atom approximation
gives a good overall description of the processes at play, and can be fudged to achieve sub-
percent accuracy [37]. In this approximation, the evolution equations of the free electron
fraction xe and IGM temperature TM is governed by:

dxe(z)
dz

= 1
(1 + z)H(z)(R(z) ≠ I(z) ≠ IX(z)) ,

dTM

dz
= 1

1 + z

5
2TM + “(TM ≠ TCMB)

6
+ Kh . (2.1)

where the R and I terms are the standard recombination and ionization rates given by

R(z) = C

5
–Hx

2

enH

6
, I(z) = C

5
—H(1 ≠ xe)e≠ h‹–

kbT
M

6
. (2.2)

The e�ective ionization rate IX can be decomposed as IX(z) = IXi(z) + IX–(z), where IXi

is the rate of direct ionization and IX– that of excitation+ionization:

IXi = ≠ 1
nH(z)Ei

dE

dV dt

----
dep,i

, IX– = ≠ (1 ≠ C)
nH(z)E–

dE

dV dt

----
dep,–

, (2.3)

while Ei and E– are respectively the average ionization energy per baryon, and the Lyman-–
energy. Finally, the rate Kh at which the plasma is heated by DM decay or annihilation is
defined as:

Kh = ≠ 2
H(z)(1 + z)3kbnH(z)(1 + fHe + xe)

dE

dV dt

----
dep,h

. (2.4)

We refer e.g. to the appendix of Ref. [28] for further definitions and more details on each of
these coe�cients. In CLASS, it is possible to use a fudged version of Recfast [37, 38] or HyRec
code [34] to solve these recombination equations. The ExoCLASS branch proposes as a third
possibility the use of CosmoRec [35].

– 4 –

Stocker+ 1801.01871

The Cosmological Accretion Bound
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The physics behind the bound

• Impact on CMB anisotropy is due to the alteration of the 
visibility function and the recombination optical depth  

8
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FIG. 2: Top panel: Energy deposition functions computed
following ref. [97] in the case of accreting PBH. Bottom

panel: Comparison of the free electron fractions obtained for
a monochromatic population of PBH with masses 500 M�
depending on the accretion recipe used. The curve labelled
“standard” refers to the prediction in a ⇤CDM model whose
parameters have been set to the best fit of Planck 2016 like-
lihoods high-` TT,TE,EE + LOWSim [1].

MPBH < 150 M� for fPBH = 1, as opposed to their
MPBH

<
⇠ 100 M�. We attribute the 50% degradation

of our bound compared to Ref. [58] to our more refined
energy deposition treatment. We checked that an agree-
ment at a similar level with Refs. [57, 107] is obtained if
we implement their prescriptions, but since some equa-
tions in Ref. [107] (re-used in Ref. [57]) have been shown
to be erroneous [58], we do not discuss them further.

Our fiducial conservative constraints (at 95% C.L.)
are represented in Fig. 4 with the blue-shaded region in
the plane (MPBH, fPBH): We exclude PBH with masses
above ⇠ 2 M� as the dominant form of DM. The con-
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+
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FIG. 3: CMB TT (top panel) and EE (bottom panel) power
spectrum obtained for a monochromatic population of PBH
with masses 500 M� depending on the accretion recipe used.

straints can be roughly cast in the form:

fPBH <

✓
2 M�
M

◆1.6✓0.01

�

◆1.6

. (23)

This is two orders of magnitudes better than the spheri-
cal accretion scenario, and it improves significantly over
the radio and X-ray constraints from Ref. [48], without
dependence on the DM halo profile as those ones. Lens-
ing constraints are nominally better only at M <

⇠ 6 M�.
Note also the importance of the relative velocity be-
tween PBH and accreting baryons: If instead of Eq. (8)
we were to adopt ve↵ ' cs,1—representative of a case
where a density of baryons comparable to the cosmo-
logical one is captured by halos at high redshift—the
bound would improve by a further order of magnitude, to
M <

⇠ 0.2 M� (light-red shaded region in Fig. 4). This is
also true, by the way, for the spherical accretion scenario,
where—all other conditions being the same—adopting

Poulin+ 1707.04206

The Cosmological Accretion Bound
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The physics behind the bound

• Result: The strongest bound in the high-mass range! 

Poulin+ 1707.04206 
Serpico+ 2002.10771
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FIG. 7: Bounds on the abundance of PBH assuming disk accretion (light shade) or spherical accretion (dark shade), accounting
for the formation of a DM halo. The most stringent bounds in the same mass regions are also shown: Second order GW ones
from [3], Icarus ones from [60], LIGO ones according to [5], BBN bounds from [75], spectral CMB distortions from [76]. The
arrow indicates that for masses M >⇠ 200 M�, PBH can in principle grow in mass up to 109 M� by z = 7.5 by accreting baryons
at Eddington luminosity with ✏ = 0.1.

about 10�5 of the DM mass density in the universe (e.g.
Ref. [87], see also the gray band in Fig. 5 of Ref. [88]).
However, as we just reviewed, it is known that SMBH un-
dergo significant growth with time. In fact, at z ' 6 the
overall mass density into SMBH above 106

M� was only
about a factor 10�3.5 of the current value, such that the
di↵erence between these figures must be accounted for
via mergers, accretion and newly formed objects. A more
quantitative description of the high-redshift SMBH mass
function can be given in terms of the so-called Schechter
function,

dnBH

d log
10

m
= m ln 10

dnBH

dm
=  m

↵
e
�m

, (29)

with inferred values at z = 6 of  = 1.23 ⇥ 10�8Mpc�3,
↵ = �1.03 and m ⌘ M/M⇤, with M⇤ = 2.24 ⇥ 109

M�
(see Ref. [89] or equivalently Fig. 2 in Ref. [90]).
This is consistent with the inferred co-moving density
> 1.1⇥10�9 Mpc�3 above 109

M� between z = 6.44 and
z = 7.44 reported in Ref. [89]. If translated in terms
of the DM fraction, Eq. (29) yields about 96M� Mpc�3

above 106
M�, equivalent to a fraction of the DM abun-

dance in SMBH above 106
M� of fPBH ' 2.9 ⇥ 10�9.

Thus, even under the extreme case of eq. (25), the CMB

angular power spectra do not exclude a primordial origin

hypothesis for the SMBHs.

Are there counter-arguments to this? An apparent
theoretical di�culty is that one expects a direct forma-
tion of SMBHs to happen after the weak reaction freeze-
out, since the horizon mass scales roughly as MH '

105(t/s) M�. However, having a very tiny fraction of
matter in the form of Primordial SMBHs at BBN times,
or even somewhat after BBN, is not obviously excluded,
and only limited by theoretical creativity. A more seri-
ous concern is that, if SMBHs form from (quasi)Gaussian
fluctuations, the mass 6⇥ 104

M� <
⇠ M <

⇠ 5⇥ 1013
M� is

subject to tight constraints coming from CMB spectral
distortions [76]. No cosmologically relevant abundance is
allowed in this range unless the PBH form out of highly
non-Gaussian tail fluctuations [91–93].

In summary, this discussion leaves two possible (pri-
mordial) scenarios:

1 Primordial SMBH hypothesis: SMBHs with a mass
function similar to the inferred one, eq. (29), are
directly of primordial origin. This requires PBHs
to form under rather peculiar highly non-Gaussian
conditions in order to fulfill CMB spectral con-
straints. Also, the bulk of the SMBH population is

The Cosmological Accretion Bound
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The role of Dark Matter mini-halos

https://files.slack.com/files-pri/T358T8AK1-F05QT2DLWQP/
epsilon.png

• Sub-dominant population of PBHs immersed in another form of DM, expanding 
and diluting 

• Accretion of DM mini-halos: Balance between gravitational pull and expansion 
of the universe 

3

FIG. 1. Fraction of PBHs that belong to some binary
system formed in the early Universe. This quantity
is plotted as a function of the fraction of DM in PBHs (for
di↵erent values of the PBH mass). As mentioned in the text,
if PBHs make all the DM, most of them belong to pairs that
have a chance to decouple from the Hubble flow before matter-
radiation equality and form a binary system.

With these prescriptions, the integral of the PDF over
the full (a, j) parameter space provides the fraction of
PBHs that form a decoupled binary system in the early
Universe, as shown in Fig. 1 for di↵erent values of the
PBH mass and DM fraction in PBHs.

The full PDF P (a, j) is displayed in Fig. 2. In the
same figure we also show the contours referring to the
expected merger time of the binary due to the emission
of gravitational radiation, which is given by [34]:

tmerge =
3 c5

170G3
N

a
4
j
7

M
3
PBH

. (11)

We remark that either a very small semi-major axis or an
extreme eccentricity is required to get a merger time com-
parable with the age of the Universe (tuniv ⇠ 13.7 Gyr):
wider, more circular binaries tend to merge on much
longer timescales.

B. Accretion of dark matter mini-halos before
binary decoupling

Let us now add another relevant piece of information
to our model.

Given the PDF described above, the authors of [17]
derived the merger rate at present time, and found that
it would exceed the one observed by the LIGO and Virgo
collaborations. Thus, PBHs can only be a small fraction
of the DM in the Universe.

Motivated by these results, we consider a scenario char-
acterized by a sub-dominant population of PBHs, im-

FIG. 2. Probability distribution of PBH binaries that
decouple in the early Universe. The PDF, derived in [17],
is given by Eq. 5. We plot it as a function of the semi-major
axis a and dimensionless angular momentum j =

p
1� e2.

The red solid lines show contours of constant merger time (in
Gyr).

mersed in a high-density DM-dominated environment,
rapidly expanding and diluting. In this context, the rel-
evant e↵ect we want to model is the progressive growth
of a DM mini-halo around each PBH, governed by the
competition between the gravitational pull of the PBH
and the expanding Hubble flow.
The accretion of the DM halo deep in the radiation

era can be computed numerically [22, 23] by solving the
following equation (similar to Eq. 7), describing radial
infall of matter in an expanding universe:

d2r

dt2
= �

GMPBH

r2
+ (Ḣ +H

2)r , (12)

where H(t) = 1/(2t). Evolving the above equation for
each shell, starting from very high redshift with the initial
conditions r = ri and ṙ = Hiri = ri/(2ti), one finds that
the PBH can accrete a DM halo with M

eq
halo = MPBH at

the end of the radiation era (z = zeq).
The density profile of such a halo was first determined

analytically in [35] as a power law

⇢(r) / r
�3/2

. (13)

We note that the same dependence on r has been ob-
tained in recent, realistic numerical simulations [36]
that follow the evolution of ultra-compact mini halos
(UCMHs)2. There is however evidence that UCMHs may

2 Such halos can form out of small-scale large-amplitude density
fluctuations that are too small to form PBHs, but still large
enough to originate collapsed structures. The ⇢(r) / r�3/2 pro-
file can develop if the UCMHs originate from a pronounced spike
in the power spectrum at some given reference scale.

A PBH can accrete a DM halo with MHalo = MPBH at the end of the radiation era (z = zeq) 

Turn-around radius 
for a generic DM shell 

3

Using the acceleration equation, ä/a = ≠(1+3Ê)H2
/2,

we get a turnaround radius, r = rta, defined by

GMPBH = (1 + 3Ê)H
2

2 r
3

ta
. (2)

We can gain some intuition from this. During radiation
domination the total energy contained within a sphere of
this radius is equal to half the mass of the PBH (setting
the speed of light to c = 1),

1
2MPBH = 4fi

3 fltotr
3

ta
. (3)

At matter-radiation equality the energy in the dark mat-
ter mass is equal to the energy in radiation. Therefore,
at matter-radiation equality, the dark matter halo mass
around a PBH is comparable to MPBH, independent of
the PBH mass.

During radiation domination we can use H = 1/(2t)
to calculate that

rta ƒ
!
4GMPBHt

2

ta

"1/3

. (analytical estimate) (4)

tta is then the time that a shell is turning around at rta.
We present numerical solutions to Eq. (1) in appendix
B. These show that a much more accurate solution (to
better than 0.1% accuracy) is reached by instead using

rta ƒ
!
2GMPBHt

2

ta

"1/3

, (numerical estimate) (5)

so we will instead use this definition of rta for the dura-
tion of this paper.

B. Kinetic and potential energy

Our simulations initialise particles with zero thermal
velocity. We are interested in their behaviour during
radiation domination when dark matter is very sub-
dominant. It might be expected that the thermal ki-
netic energies of the particles would have a measurable
e�ect on the density profiles. We show in this section
that for PBH masses of order 10M§ this is not true.2 To
do this we derive the ratio between the thermal kinetic
energy and potential energy of a dark matter particle at
turnaround and show that it is negligible. At any later
time the ratio will be even smaller.

Extracting the gravitational potential at turnaround
is straightforward. The dark matter particles have mass
m‰, the PBH has mass MPBH and their separation is the
radius of turnaround, rta. Thus

Ep = GMPBHm‰

rta

. (6)

2
In fact, if the dark matter mass satisfies m‰ Ø 100 GeV, thermal

kinetic energy can be ignored for any PBH mass & 10
≠6M§ - as

we show in section II D.

To know the kinetic energy at turnaround we need to
scale the temperature of the dark matter when it de-
couples from the radiation down to its temperature at
turnaround. The temperature of the dark matter drops
proportionally to 1/a

2. Note that this is di�erent to the
temperature of the Universe itself, which is dominated
by radiation and thus drops proportionally to 1/a.

The velocities of the dark matter are given by a
Maxwell-Boltzmann distribution. To within a factor of
a few, the peak, mean and rms of the velocity distribu-
tion are given by mv

2 ƒ kT . This means that if we use
units where k = 1 and T is measured in eV, Ek = T .
Therefore, in terms of the dark matter temperature at
decoupling, TKD, and the time of decoupling, tKD, the
kinetic energy at turnaround is

Ek = TKD

3
aKD

ata

42

= TKD

tKD

tta

= TKDtKD (2GMPBH)1/2

r
3/2

ta

. (7)

The ratio between kinetic and potential energy can
now be expressed as

Ek

Ep
=

3
TKD

m‰

4 3
tKDÔ

rta

4 3
2

GMPBH

4 1
2

. (8)

To explore this ratio as a function of rta and MPBH we
first need to choose a dark matter model to give us TKD,
tKD and m‰. For this we follow [11]. Specifically, we
take the temperature of kinetic decoupling to be given
by equation (B5) in [11],

TKD = m‰

�(3/4)

3
– m‰

MPl

41/4

, (9)

with

– ©
Ú

16fi3gı(T )
45 , (10)

and gı = 61.75 from equation (4) of [11] and the text
below it. The time at decoupling is then found from the
Friedmann equation

1
2t

= –T
2

MPl

, (11)

which is equation (3) in [11]. Finally, the dark matter
particle mass is taken to be m‰ = 100 GeV, again fol-
lowing [11]. We note that if we were to follow the pro-
cedure in [10] instead our results would be very similar,
with small changes due to small di�erences in the parti-
cle physics model underlying the dark matter. In both
cases, for LIGO-like PBH masses, the kinetic energy is
at least 100 times smaller than the potential energy at
the turnaround time for all relevant radii.
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The role of Dark Matter mini-halos
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• Simple analytical computation (DM particles are frozen in at turn-around 
with their density matching the background density): 

Analytical and numerical computations in [Bertschinger, ApJS 1985; Sten 
Delos et al. 1712.05421; Gosenca et al. 1710.02055;  Adamek et al. 
1901.08528] 

• Recent developments: Computation of profile as function of:  
• BH mass and DM particle mass,  
• Temperature of kinetic decoupling  

[Boudaud+ 2106.07480, Carr+ 2011.01930] 
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Figure 1: Dynamics of di↵erent DM shells around a PBH of mass mpbh = 100M� from deep
radiation domination up to matter-radiation equality, teq. The distance r of all the DM shells
are measured from the center of the PBH. In the left panel, the blue colored region represents
the DM spike around the PBH consisting of various DM shells shown by colored concentric
circles. In the right panel, the colored lines show the evolution of di↵erent DM shells around
the PBH, in accordance with Eq. (2.1). The black dotted line shows the turnaround radii, rta
of DM shells given by Eq. (2.2) which grows with time.

in the range 10�5
� 10�4 pc, DM shells initially evolve under the simultaneous e↵ect of

gravitational attraction of the PBH and Hubble expansion. After the turnaround point (where
gravitational attraction of the PBH becomes stronger than the Hubble expansion), they start
moving towards the PBH and become bound to it. For ri greater than 10�4 pc , the Hubble
expansion dominates over the gravitational attraction of the PBH and the DM shells do not
get gravitationally bound to the PBH before matter-radiation equality.

2.1 Density profile of DM spikes

Based on the PBH mass and time scale at which the kinetic decoupling of the DM particles
occurs [67], the density profile of the DM spikes around the PBHs can be a power law with
di↵erent radial indices, as discussed in detail in Ref. [68]. Here, we assume that the formation
of the PBHs takes place after the kinetic decoupling of the DM particles such that there is no
previous accretion of DM particles around the PBHs [69]. The size of the DM spike at any
time is given by the turnaround radius rta of the DM shells at that time. Then, for radiation
domination, the density of the DM spike at a distance r from the center of a PBH of mass
mpbh can be written as:

⇢sp(r) '
⌦cdm

⌦m

⇢eq

2

�
2Gmpbht

2
eq

�3/4
r
�9/4

, (2.3)

with ⇢eq being the total energy density of the Universe at matter-radiation equality (teq) and
⌦cdm/⌦m ⇡ 0.85 as the fraction of CDM in the matter density of the Universe [70]. Here, the
subscript ‘sp’ denotes the DM spike accreted around an isolated PBH. In Eq. (2.3), the factor
of one half comes from the fact that at matter-radiation equality, density of matter is half of
the total energy density. This equation di↵ers slightly from the density profiles of DM spikes

– 4 –

The paper is organized in the following manner. In Sec. 2, we review the accretion
process of DM spikes around isolated PBHs by closely following the formalism of Ref. [47].
Then, in Sec. 3, we describe the formation mechanism of PBH binaries with and without
DM spikes taking into account the impact of DM spikes. After that analytical and numerical
calculations of the merger time for PBH binaries with and without DM spikes are presented in
Sec. 4. Then, we calculate the merger rates of these PBH binaries for three di↵erent extended
PBH mass functions in Sec. 5. In Sec. 5, we also discuss how the gap between the merger
rates of PBH binaries with and without DM spikes varies with the abundance of PBHs in
CDM fpbh. Finally in Sec. 6, we conclude and point out possible future directions.

2 Formation of DM spikes around PBHs

In this section, we review the formation mechanism and density profile of DM spikes around
isolated PBHs proposed originally in Ref. [41, 42], following closely the treatment in Ref. [47].
We start with the assumption that in the early Universe, non-annihilating CDM particles
(such as axions or WIMPs with almost negligible annihilation cross-sections) can encounter
isolated PBHs in their vicinity, due to which their motion becomes influenced by the combined
e↵ect of the gravitational attraction of the PBHs and Hubble expansion. Then, the equation
of motion of a DM shell of radius r around a PBH of mass mpbh in the FLRW metric is given
by:

d2r

dt2
= �

Gmpbh

r2
+
⇣
Ḣ +H

2
⌘
r , (2.1)

where the first term corresponds to the gravitational attraction of the PBH and the second
term denotes the decelerating Hubble expansion of the Universe. The evolution of these DM
shells starts deep in the radiation era, corresponding to the initial conditions r = ri and
ṙ = Hi ri = ri/ (2 ti).

At some point, the gravitational attraction term in Eq. (2.1) starts to dominate over the
Hubble expansion, i.e. ṙ becomes zero, due to which the DM shell starts to move towards
the PBH and becomes gravitationally bound to it. This is known as the turnaround of the
DM shell and occurs at a time tta. The size of the DM shell at turnaround is known as
the turnaround radius rta of the shell. Shells within the turnaround radius are considered
bound to the PBH. The turnaround of subsequent DM shells leads to the formation of a
DM spike around the PBH which is shown pictorially in the left panel of Fig. 1. During
radiation domination, the turnaround radius of the DM shell can be estimated analytically by
substituting ṙ = 0 and H = 1/(2 t) in Eq. (2.1). We have verified that in radiation domination,
the numerical estimate of the turnaround radius,

rta '
�
2Gmpbh t

2
ta

�1/3
, (2.2)

holds better than its analytic estimate, in agreement with Ref. [47]. So, we shall use the
numerical estimate given by Eq. (2.2) as the turnaround radius of DM shells in the rest of
the paper.

As per Eq. (2.1), the variation of the distance r of di↵erent DM shells from the center of
a PBH of mass mpbh = 100 M� are depicted in the right panel of Fig. 1. This figure shows
that at an initial distance ri (defined at some arbitrary early time) smaller than 10�5 pc
, the gravitational attraction of the PBH strongly dominates over the Hubble expansion
and the shells of the dark matter become quickly gravitationally bound to it. If ri lies
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Figure 1: Dynamics of di↵erent DM shells around a PBH of mass mpbh = 100M� from deep
radiation domination up to matter-radiation equality, teq. The distance r of all the DM shells
are measured from the center of the PBH. In the left panel, the blue colored region represents
the DM spike around the PBH consisting of various DM shells shown by colored concentric
circles. In the right panel, the colored lines show the evolution of di↵erent DM shells around
the PBH, in accordance with Eq. (2.1). The black dotted line shows the turnaround radii, rta
of DM shells given by Eq. (2.2) which grows with time.

in the range 10�5
� 10�4 pc, DM shells initially evolve under the simultaneous e↵ect of

gravitational attraction of the PBH and Hubble expansion. After the turnaround point (where
gravitational attraction of the PBH becomes stronger than the Hubble expansion), they start
moving towards the PBH and become bound to it. For ri greater than 10�4 pc , the Hubble
expansion dominates over the gravitational attraction of the PBH and the DM shells do not
get gravitationally bound to the PBH before matter-radiation equality.

2.1 Density profile of DM spikes

Based on the PBH mass and time scale at which the kinetic decoupling of the DM particles
occurs [67], the density profile of the DM spikes around the PBHs can be a power law with
di↵erent radial indices, as discussed in detail in Ref. [68]. Here, we assume that the formation
of the PBHs takes place after the kinetic decoupling of the DM particles such that there is no
previous accretion of DM particles around the PBHs [69]. The size of the DM spike at any
time is given by the turnaround radius rta of the DM shells at that time. Then, for radiation
domination, the density of the DM spike at a distance r from the center of a PBH of mass
mpbh can be written as:
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with ⇢eq being the total energy density of the Universe at matter-radiation equality (teq) and
⌦cdm/⌦m ⇡ 0.85 as the fraction of CDM in the matter density of the Universe [70]. Here, the
subscript ‘sp’ denotes the DM spike accreted around an isolated PBH. In Eq. (2.3), the factor
of one half comes from the fact that at matter-radiation equality, density of matter is half of
the total energy density. This equation di↵ers slightly from the density profiles of DM spikes
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The Bondi Radius
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which is given by q⌦
v
2

rel

↵
= min


1,

1 + z

1000

�
· 30 km s�1

. (2.3)

The PBH velocity distribution is assumed to be described by a Maxwell–Boltzmann distri-
bution centered around this mean value.

2.2 The Bondi–Hoyle–Lyttleton model

According to the BHL accretion model [15, 17], the accretion rate onto an isolated compact
object, characterized by its mass M and speed vrel, is given by

ṀBHL = 4⇡�
(GM)2⇢b

(v2
rel

+ c2s )
3/2

, (2.4)

where ⇢b and cs are the ambient medium density and sound speed, respectively, and � is a
constant suppression factor (see below). The BHL accretion rate can also be expressed in
terms of an e↵ective cross section

ṀBHL = 4⇡�⇢b
G

2
M

2

v
3

e↵

= 4⇡�⇢b ve↵ r
2
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In several works, both in astronomical and cosmological settings, the BHL formula is
corrected ad-hoc by a suppression factor �. In the astronomical context, a value of � ⇠ 10�2

�

10�3 is included to match observations of the luminous emission from accreting compact
objects, such as the non-observation of a large population of isolated neutron stars [31] or
astrophysical BHs [32] in the local region, as well as the studies of nearby active galactic
nuclei [33], and of the supermassive BH at the Milky-Way center [34]. This factor aims to
phenomenologically capture the impact of a variety of non-gravitational forces (pressure, fluid
viscosity, radiation feedback, etc.), which may partially counteract the gravitational pull of
the compact object and suppress the accretion rate.

Similarly, in the cosmological context, the correction to the Bondi formula due to the
coupling of the gas to the CMB photon fluid (accounting for Hubble expansion and DM
over-densities) has been computed and explicitly expressed as a function of several thermo-
dynamic quantities that characterize the ambient medium [10, 13, 35]. These papers assume
spherical symmetry for the accretion process and bremsstrahlung (free-free) radiation near
the Schwarzschild radius as the dominant cooling process.

In the following, we use as a benchmark scenario � = 0.01 in the context of disk
accretion. However, for the spherical accretion case, which leads to weaker bounds and
can be considered a conservative scenario, we will instead use the results of [13] to set the
suppression factor �.

2.3 The Park-Ricotti accretion model

The impact of radiative feedback on the accretion process was studied by Park and Ricotti
through hydro-dynamical simulations of accretion of a homogeneous medium into a compact
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That analysis was carried out assuming BHL accretion; in this work, we will extend this
modeling to assess the role of DM mini-halos in the context of the PR model.

3.1 Analytical modelling

As discussed in §2.3, the PR model is based on the description of a BHL accretion problem
taking place within an ionized region around the BH. This consideration allows us to apply
a similar treatment for the inclusion of DM mini-halos to that employed in [14, 46] for BHL.
This consists in replacing the Bondi radius rB in Eq. (2.6) with an e↵ective radius r
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B
, which

accounts for the gravitational pull of the DM halo. We write the accretion rate as
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where �h(r) is the gravitational potential generated by the DM mini-halos. In the PR case,
this approach is self-consistent as long the e↵ective radius obtained in this way does not
exceed the size of the ionized region. We verify that this is true for the parameters relevant
to this work, assuming, as estimated in [47], that the size of the ionized region is around 102

times larger than the Bondi radius computed within the ionized region.
The square root of the right-hand side of Eq. (3.2) represents an escape velocity, which

depends on r. For r < r
e↵
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, this velocity is larger than the e↵ective velocity ve↵ that charac-

terizes the gas, and the gas can be captured and accreted by the PBH. Conversely, when ve↵

is larger than this quantity, due to either a large sound speed or large flow velocity of the
gas around the PBH, the gas is able to escape the gravitational field of the PBH.

We model the DM mini-halos with a power law density profile ⇢h(r) and a sharp cuto↵
at the halo radius r = rh
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, r < rh. (3.3)

Motivated by the discussion at the beginning of this section, we set the power law index to
↵ = 9/4. The halo radius and the normalization constant depend on the PBH mass and
evolve with redshift. Adopting the same model as the one employed in [14], we set the total
halo mass Mh and halo radius rh respectively to

Mh '
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1 + z
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The gravitational potential generated by the DM mini-halos is then given by
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(3.5)
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ṀBHL = 4⇡�
(GM)2⇢b

(v2
rel

+ c2s )
3/2

, (2.4)

where ⇢b and cs are the ambient medium density and sound speed, respectively, and � is a
constant suppression factor (see below). The BHL accretion rate can also be expressed in
terms of an e↵ective cross section
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nuclei [33], and of the supermassive BH at the Milky-Way center [34]. This factor aims to
phenomenologically capture the impact of a variety of non-gravitational forces (pressure, fluid
viscosity, radiation feedback, etc.), which may partially counteract the gravitational pull of
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Similarly, in the cosmological context, the correction to the Bondi formula due to the
coupling of the gas to the CMB photon fluid (accounting for Hubble expansion and DM
over-densities) has been computed and explicitly expressed as a function of several thermo-
dynamic quantities that characterize the ambient medium [10, 13, 35]. These papers assume
spherical symmetry for the accretion process and bremsstrahlung (free-free) radiation near
the Schwarzschild radius as the dominant cooling process.

In the following, we use as a benchmark scenario � = 0.01 in the context of disk
accretion. However, for the spherical accretion case, which leads to weaker bounds and
can be considered a conservative scenario, we will instead use the results of [13] to set the
suppression factor �.
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The impact of radiative feedback on the accretion process was studied by Park and Ricotti
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Figure 1: Dynamics of di↵erent DM shells around a PBH of mass mpbh = 100M� from deep
radiation domination up to matter-radiation equality, teq. The distance r of all the DM shells
are measured from the center of the PBH. In the left panel, the blue colored region represents
the DM spike around the PBH consisting of various DM shells shown by colored concentric
circles. In the right panel, the colored lines show the evolution of di↵erent DM shells around
the PBH, in accordance with Eq. (2.1). The black dotted line shows the turnaround radii, rta
of DM shells given by Eq. (2.2) which grows with time.

in the range 10�5
� 10�4 pc, DM shells initially evolve under the simultaneous e↵ect of

gravitational attraction of the PBH and Hubble expansion. After the turnaround point (where
gravitational attraction of the PBH becomes stronger than the Hubble expansion), they start
moving towards the PBH and become bound to it. For ri greater than 10�4 pc , the Hubble
expansion dominates over the gravitational attraction of the PBH and the DM shells do not
get gravitationally bound to the PBH before matter-radiation equality.

2.1 Density profile of DM spikes

Based on the PBH mass and time scale at which the kinetic decoupling of the DM particles
occurs [67], the density profile of the DM spikes around the PBHs can be a power law with
di↵erent radial indices, as discussed in detail in Ref. [68]. Here, we assume that the formation
of the PBHs takes place after the kinetic decoupling of the DM particles such that there is no
previous accretion of DM particles around the PBHs [69]. The size of the DM spike at any
time is given by the turnaround radius rta of the DM shells at that time. Then, for radiation
domination, the density of the DM spike at a distance r from the center of a PBH of mass
mpbh can be written as:

⇢sp(r) '
⌦cdm

⌦m

⇢eq

2

�
2Gmpbht

2
eq

�3/4
r
�9/4

, (2.3)

with ⇢eq being the total energy density of the Universe at matter-radiation equality (teq) and
⌦cdm/⌦m ⇡ 0.85 as the fraction of CDM in the matter density of the Universe [70]. Here, the
subscript ‘sp’ denotes the DM spike accreted around an isolated PBH. In Eq. (2.3), the factor
of one half comes from the fact that at matter-radiation equality, density of matter is half of
the total energy density. This equation di↵ers slightly from the density profiles of DM spikes
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Interestingly enough, super-Eddington accretion is at-
tained in our formalism for M >

⇠ 104
M�, so that both

conditions above yield similar limitations, albeit by co-
incidence. The homogeneous approximation discussed in
Appendix A is also valid in the same range of interest.
It is worth clarifying that CMB anisotropy bounds are
expected to exist also at higher masses, but they become
rather uncertain and definitely the formalism above is
insu�cient to tackle them. Fortunately, for such high
masses, other bounds become relevant, as discussed in
Sec. V B.

In App. B, we also check that the dynamical friction

that a rather massive PBH experiences moving superson-
ically in the cosmological baryonic gas is negligible for the
masses and redshifts of interest for this work.

III. INCLUDING COSMOLOGICAL DM HALOS

It has been argued in the past [32–34] that, due to
the PBH gravity, a DM halo would form around massive
PBH, boosting their accretion. Note that the Eddington
luminosity benchmark only applies to baryons, subject
to radiation pressure. As far as baryonic accretion is the
only one considered, the Salpeter timescale suggests that
the PBH mass remains essentially constant down to the
redshifts of interest for CMB bounds. Hence, we can
safely consider fPBH constant, while DM halos a↵ect the
phenomenology via the altered accretion rate.

Although the original Bondi problem was considering
accretion onto a point particle, a natural generalization
of the notion of Bondi radius for an extended distribution
of mass can be written as [35]:

GN MPBH

rB,e↵

� �h(MPBH, rB,e↵ , t) = v
2

e↵
(t) , (13)

where rB,e↵ , the e↵ective Bondi radius, is the unknown,
MPBH is the initial PBH mass and �h the (time-
dependent) gravitational potential associated to the DM
halo. Our treatment of the problem consists in adopt-
ing Eq. (9), but with rB replaced by rB,e↵ , solution of
Eq. (13) with the gravitational potential of the halo es-
timated analytically or numerically. In this section, we
revisit our estimates accounting for the DM capture phe-
nomenon. First, we consider a toy model, which we be-
lieve determines an upper limit to the e↵ect. Then, we
improve over this estimate with the help of numerical
simulations.

A. Toy model

The most optimistic scenario for PBH growth is that
DM is exactly cold and with no dispersion, and the PBH
is the only center of attraction in the whole universe.
This is a spherically symmetric problem. In order to
calculate the time evolution of a radius r of a mass-shell

around a PBH which encloses di↵erent species, we solve
the following di↵erential equation,

d
2
r

dt2
= �

4GN

⇡
3r

"
⇢PBH +

X

i

(⇢i + 3pi)

#
, (14)

where ⇢i and pi are the energy density and pressure of a
component “i”, respectively, and we defined the energy
density of the PBH as ⇢PBH = 3 MPBH/(4⇡r

3). Here i

runs on all the components of radiation and matter (and
dark energy if it were e↵ective). The physical radius
r is represented by r = a(t)x where a(t) is the scale
factor normalized to be a(t0) = 1 at the present Universe
(t = t0), and x is the co-moving coordinate. At each
time t, the bound (or halo) mass is equivalent to the DM
density up to the radius rs defined by

drs

dt
(t) = 0 , (15)

although a similar value would be found if one derives
rs from the condition that the density at rs is twice
the cosmological background one, as in Ref. [33]. Un-
der the above-mentioned approximations, we find good
agreement with the results reported in Ref. [33], namely:

• A time evolution given by

Mhalo '

✓
3000

1 + z

◆
MPBH . (16)

• A density profile proportional to / r
�3, as illus-

trated in Fig 1, down to the distances (not resolved
in Fig 1) where a free-fall profile r

�3/2 takes over.

Eq. (16) should be understood as an upper limit to
the mass growth of the PBH via DM accretion proceed-
ing self-similarly once a DM halo of mass larger than the
PBH is accumulated. Its breakdown is only expected at
very late times (e.g. when dark energy kicks in) or when
the hypothesis of isolated PBH breaks down (which fur-
ther requires high fPBH). On the other hand, the radial
profile crucially depends on the free-fall boundary condi-
tion at the center. Not accounting for the DM angular
momentum is however a very crude approximation. It
was speculated in Ref. [29], Sec. 4, that other scaling
solutions like the ones described in the seminal paper by
Bertschinger [32] may provide a better description of the
results. To verify this conjecture, we turn to the results
of N-body simulations.

B. Numerical simulations

We perform cosmological N -body simulations using a
version of the CUBEP3M code [36] modified to include
PBHs as a separate particle species co-evolved with a
generic collisionless DM candidate [37]. We opt for homo-
geneous DM initial conditions at a = 10�6 and select cos-
mological parameters consistent with Planck: ⌦c = 0.26,

•  We define an Effective Bondi Radius in presence of the DM mini halo 
(Potential energy of the gas with halo > thermal + kinetic energy) 

•  Potential due to DM mini-spike —> Effective Bondi radius is larger —> 
“Accretion boost” —>  Stronger bound 

P. Serpico et al., 2002.10771
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FIG. 2: DM halo profiles (with mass scaling in x-axis) around
a PBH at z = 99 and z = 999, for di↵erent values of the
PBH abundance. A power-law profile r�2.25 is also shown for
comparison.

FIG. 3: Gravitational potentials of the PBH (dotted inclined
lines, with the straight line representing the analytical result),
the halo (curved dashed line) and the sum (solid line) com-
pared to the typical velocity scales of the problem (horizontal
lines) at z = 99.

Note that it is safe to neglect the “ordinary” DM ha-
los feedback onto the halos growing around PBH, since
the former ones only grow at much later times (typically
z <

⇠ 30 in a ⇤CDM cosmology) than those of concern for
us. A fortiori, the feedback of the baryons can also be
neglected. The bulk of baryons has significant velocity at
the epochs of interest, and they are still kinetically cou-
pled to the CMB. Most of them are essentially unbound
to halos, and their ratio to the DM in the growing halos
around PBH is much smaller than the baryon to dark
matter cosmological density ratio of ⇠ 15%. Hence, ob-
jections on the realism of power law DM density profiles

around BH surviving in the current universe [41] do not
apply to the pristine configurations considered here.

C. Semi-analytical model

In the specific case of a point-like potential due to the
PBH plus the power-law matter distribution around it,
with density ⇢(r) / r

�↵ up to a distance rh and total
mass Mh, Eq. (13) rewrites

v
2

e↵
(z) =

GN MPBH

rB,e↵

+
GNMh

rB,e↵

n
⇥(rB,e↵ � rh) +

+
⇥(rh � rB,e↵)

1 � p

✓
rb

rh

◆p

� p

✓
rB,e↵

rh

◆��
, (21)

where p = 3�↵, and Mh and rh depend from {MPBH, z}.
We adopt Eq. (16) for the halo mass within the

turnaround radius, where the turnaround radius is (see
e.g. Sec. 4 in Ref. [29])

rt.a. ' 58 pc (1 + z)�1

✓
Mh(MPBH, z)

M�

◆1/3

. (22)

We identify rh = rt.a., in order to have a self-consistent
normalization of the mass.

Eq. (21) admits either the solution

rB,e↵ =
GN (MPBH + Mh)

v
2

e↵

'
GN Mh

v
2

e↵

⌘ rB,h , (23)

which holds if rh < rB,h; otherwise, if rh > rB,h, neglect-
ing the PBH mass one has

rB,e↵ ' rh


(1 � p)

rh

rB,h

+ p

� 1
p�1

 rh. (24)

Note that Eq. (24) tends to rB,h when p ! 0, as ex-
pected: When the DM halo profile is very steep and/or
the halo is very compact, as far as accreting baryons are
concerned they simply see a BH whose e↵ective mass is
the sum of the PBH and the DM halo mass. If the halo
is flu↵y or large, only a fraction of the mass of the halo
contributes to the accretion. In any case, the condition
rB,e↵ � rB,PBH must hold. This constraint must be ver-
ified and eventually imposed by hand as a lower limit if
using the approximated Eq. (24) or the RHS of Eq. (23).
We have found that the CMB constraints obtained using
this model are in agreement within 50% with the ones
obtained from results of the numerical simulations in the
mass range covered by the simulations3. We thus use
this model with p = 0.75 to compute the impact of PBH
accretion onto the CMB.

3 We checked that varying p 2 [0.50, 0.75] a↵ects our results to
below 10% level.

power-law remains nevertheless a good description for the range of PBH masses we consider.
This profile has also been confirmed by numerical simulations [14, 41]. The DM mini-halos
create an additional gravitational potential around the BH, which is expected to boost the
accretion rate [14, 21]. In particular, it was shown in Ref. [14] that DM mini-halos can have
a dramatic impact on the CMB bound on fPBH, making it stronger by orders of magnitude.
That analysis was carried out assuming BHL accretion; in this work, we will extend this
modeling to assess the role of DM mini-halos in the context of the PR model.

3.1 Analytical modelling

As discussed in §2.3, the PR model is based on the description of a BHL accretion problem
taking place within an ionized region around the BH. This consideration allows us to apply
a similar treatment for the inclusion of DM mini-halos to that employed in [14, 46] for BHL.
This consists in replacing the Bondi radius rB in Eq. (2.6) with an e↵ective radius r

e↵

B
, which

accounts for the gravitational pull of the DM halo. We write the accretion rate as

Ṁ = 4⇡⇢b ve↵ (re↵B )2 . (3.1)

For the BHL model, v
BHL

e↵
=

�
c
2
s + v

2

rel

�
1/2

. In the case of the PR model, the relevant e↵ective

velocity must be defined within the ionized region, hence we set v
PR

e↵
= (c2

s,in
+ v

2

in
)1/2. Given

an e↵ective velocity, the e↵ective Bondi radius r
e↵

B
is the radius that satisfies the following

equation

v
2

e↵
=

GM

r
� �h(r) , (3.2)

where �h(r) is the gravitational potential generated by the DM mini-halos. In the PR case,
this approach is self-consistent as long the e↵ective radius obtained in this way does not
exceed the size of the ionized region. We verify that this is true for the parameters relevant
to this work, assuming, as estimated in [47], that the size of the ionized region is around 102

times larger than the Bondi radius computed within the ionized region.
The square root of the right-hand side of Eq. (3.2) represents an escape velocity, which

depends on r. For r < r
e↵

B
, this velocity is larger than the e↵ective velocity ve↵ that charac-

terizes the gas, and the gas can be captured and accreted by the PBH. Conversely, when ve↵

is larger than this quantity, due to either a large sound speed or large flow velocity of the
gas around the PBH, the gas is able to escape the gravitational field of the PBH.

We model the DM mini-halos with a power law density profile ⇢h(r) and a sharp cuto↵
at the halo radius r = rh

⇢h(r) = ⇢h,0

✓
r

rh

◆�↵

, r < rh. (3.3)

Motivated by the discussion at the beginning of this section, we set the power law index to
↵ = 9/4. The halo radius and the normalization constant depend on the PBH mass and
evolve with redshift. Adopting the same model as the one employed in [14], we set the total
halo mass Mh and halo radius rh respectively to

Mh '
3000

1 + z
M ,

rh ' 58 pc (1 + z)�1

✓
Mh

M�

◆
1/3

.

(3.4)
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Figure 1: Dynamics of di↵erent DM shells around a PBH of mass mpbh = 100M� from deep
radiation domination up to matter-radiation equality, teq. The distance r of all the DM shells
are measured from the center of the PBH. In the left panel, the blue colored region represents
the DM spike around the PBH consisting of various DM shells shown by colored concentric
circles. In the right panel, the colored lines show the evolution of di↵erent DM shells around
the PBH, in accordance with Eq. (2.1). The black dotted line shows the turnaround radii, rta
of DM shells given by Eq. (2.2) which grows with time.

in the range 10�5
� 10�4 pc, DM shells initially evolve under the simultaneous e↵ect of

gravitational attraction of the PBH and Hubble expansion. After the turnaround point (where
gravitational attraction of the PBH becomes stronger than the Hubble expansion), they start
moving towards the PBH and become bound to it. For ri greater than 10�4 pc , the Hubble
expansion dominates over the gravitational attraction of the PBH and the DM shells do not
get gravitationally bound to the PBH before matter-radiation equality.

2.1 Density profile of DM spikes

Based on the PBH mass and time scale at which the kinetic decoupling of the DM particles
occurs [67], the density profile of the DM spikes around the PBHs can be a power law with
di↵erent radial indices, as discussed in detail in Ref. [68]. Here, we assume that the formation
of the PBHs takes place after the kinetic decoupling of the DM particles such that there is no
previous accretion of DM particles around the PBHs [69]. The size of the DM spike at any
time is given by the turnaround radius rta of the DM shells at that time. Then, for radiation
domination, the density of the DM spike at a distance r from the center of a PBH of mass
mpbh can be written as:

⇢sp(r) '
⌦cdm

⌦m

⇢eq

2

�
2Gmpbht

2
eq

�3/4
r
�9/4

, (2.3)

with ⇢eq being the total energy density of the Universe at matter-radiation equality (teq) and
⌦cdm/⌦m ⇡ 0.85 as the fraction of CDM in the matter density of the Universe [70]. Here, the
subscript ‘sp’ denotes the DM spike accreted around an isolated PBH. In Eq. (2.3), the factor
of one half comes from the fact that at matter-radiation equality, density of matter is half of
the total energy density. This equation di↵ers slightly from the density profiles of DM spikes
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suming either spherical or disk accretion, and absence
or presence of a DM halo around the PBHs. For sim-
plicity, we adopt a monochromatic PBH mass function,
keeping in mind that for extended mass functions (which
are to be generically expected from single-field inflation-
ary models [52]) bounds typically tighten [53, 54], as we
explicitly checked for the CMB ones in our previous ar-
ticle [11].

As a warm-up, we derive the limit in case PBH are
accreting at Eddington luminosity. As argued, in this
case one obtains a mass-independent bound, which reads

fPBH < 2.9 ⇥ 10�9 (Lacc = LE). (25)

This is an optimistic benchmark for what is presumably
the best limit that CMB can yield to. Our more realistic
constraints at 95% C.L. are shown in Fig. 6. Note that
the bounds on PBH in absence of DM halos (dark shaded
regions) are themselves stronger than bounds previously
derived in [11] by a factor ⇠ 4. This improvement is
due roughly equally to the new Planck 2018 low mul-
tipole polarization data and the additional use of BAO
and Pantheon data, as well as to the improvements in
the treatment of energy deposition, now implemented in
ExoCLASS. Accounting for the the halo (light shaded re-
gions) does not lead to significant di↵erences unless fPBH

is su�ciently small, i.e. there is su�cient material for
growing a sizable DM halo. The threshold to see signifi-
cant improvements is fPBH

<
⇠ 0.01 for the disk accretion

case, but already at fPBH
<
⇠ 0.2 for the spherical accre-

tion case. For the latter case, the steep improvement
of the bound around M ⇠ 30 M� in presence of a halo
is only indicative, since for fPBH

>
⇠ 0.01 a non-negligible

fraction of the DM can be gravitationally bound to two or
more PBH, and the radial profile derived in the isolated-
PBH approximation breaks down [37]. At higher masses,
sensitive to lower fPBH, the approximation is however ro-
bust: The formation of a DM halo around the PBH can
strikingly improve the bound by up to ⇠ 2 orders of mag-
nitude in the covered mass range. Our results also show
that the bounds eventually flatten when M >

⇠ 104
M�.

This is a consequence of the accretion attaining the Ed-
dington limit for longer and longer periods of time, thus
converging to Eq. (25). As previously argued, in this
range the bounds become shaky since the working hy-
potheses break-down.

It is worth commenting on the relative strength of
the derived bounds with other existing ones, with the
most stringent ones reported in Fig. 7. Since curvature
perturbations couple to tensor perturbations at second-
order, PBH below the solar-mass scale are associated
to GWs generated in conjunction with their formation,
falling in the frequency probed by pulsar timing arrays.
The non observation of a stochastic signal in the nHz
range sets tight bounds [3, 55]. Galactic microlensing
constraints [56–58], roughly excluding fPBH

>
⇠ O(0.1),

also apply. Other “direct” bounds come from the non-
observation of mergers by LIGO/Virgo [59]. At few solar
masses, leading constraints come from caustic crossing

100 101 102 103 104

MPBH/M�

10�9

10�7

10�5

10�3

10�1

f P
B

H

a)

Disk Accretion

w/o DM halo

w/ DM halo
L = LE limit

Disk Accretion

w/o DM halo

w/ DM halo
L = LE limit

FIG. 6: Bounds on the abundance of PBH assuming disk ac-
cretion (panel a) or spherical accretion (panel b). We show
the results with (light-shaded) and without (dark-shaded) the
formation of a DM halo. The horizontal line shows the limit-
ing bound of Eq. (25). See text for details.

events in giant arcs (produced by stars embedded in high
magnification regions due to a Galaxy cluster) [60], but
one may expect similar or tighter constraints from the ex-
trapolation of the analysis of Ref. [59] to higher masses.

In the 10-100 M� range, the binary coalescence rate
inferred by LIGO/Virgo is estimated to yield bounds at a
level between 10�3 and 10�2 [4, 5], a result whose robust-
ness to a number of e↵ects has been checked in [6, 61, 62].
Note however that, according to [63, 64], accounting for
binary disruption can relax these limits to some extent.

Other constraints at M ⇠ O(10) M� roughly in
the ballpark of fPBH

<
⇠ O(0.1) come from the non-

observation of a stochastic gravitational wave (GW)
background (due to the mergers of PBH binaries at high-
z, in the matter dominated era) [65], quasar microlens-
ing [66], lensing of type-Ia supernovae [67], or the orbital
dynamics of halo wide binaries [68]. When approach-
ing the ⇠ 100 M� scale, radio and X-ray observations of
the Milky Way [69], the half-light radius of dwarf galax-
ies [70, 71] or the stellar distribution of dwarf galaxies [72]
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z, in the matter dominated era) [65], quasar microlens-
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ies [70, 71] or the stellar distribution of dwarf galaxies [72]
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FIG. 2: DM halo profiles (with mass scaling in x-axis) around
a PBH at z = 99 and z = 999, for di↵erent values of the
PBH abundance. A power-law profile r�2.25 is also shown for
comparison.

FIG. 3: Gravitational potentials of the PBH (dotted inclined
lines, with the straight line representing the analytical result),
the halo (curved dashed line) and the sum (solid line) com-
pared to the typical velocity scales of the problem (horizontal
lines) at z = 99.

Note that it is safe to neglect the “ordinary” DM ha-
los feedback onto the halos growing around PBH, since
the former ones only grow at much later times (typically
z <

⇠ 30 in a ⇤CDM cosmology) than those of concern for
us. A fortiori, the feedback of the baryons can also be
neglected. The bulk of baryons has significant velocity at
the epochs of interest, and they are still kinetically cou-
pled to the CMB. Most of them are essentially unbound
to halos, and their ratio to the DM in the growing halos
around PBH is much smaller than the baryon to dark
matter cosmological density ratio of ⇠ 15%. Hence, ob-
jections on the realism of power law DM density profiles

around BH surviving in the current universe [41] do not
apply to the pristine configurations considered here.

C. Semi-analytical model

In the specific case of a point-like potential due to the
PBH plus the power-law matter distribution around it,
with density ⇢(r) / r

�↵ up to a distance rh and total
mass Mh, Eq. (13) rewrites

v
2

e↵
(z) =

GN MPBH

rB,e↵

+
GNMh

rB,e↵

n
⇥(rB,e↵ � rh) +

+
⇥(rh � rB,e↵)

1 � p

✓
rb

rh

◆p

� p

✓
rB,e↵

rh

◆��
, (21)

where p = 3�↵, and Mh and rh depend from {MPBH, z}.
We adopt Eq. (16) for the halo mass within the

turnaround radius, where the turnaround radius is (see
e.g. Sec. 4 in Ref. [29])

rt.a. ' 58 pc (1 + z)�1

✓
Mh(MPBH, z)

M�

◆1/3

. (22)

We identify rh = rt.a., in order to have a self-consistent
normalization of the mass.

Eq. (21) admits either the solution

rB,e↵ =
GN (MPBH + Mh)

v
2

e↵

'
GN Mh

v
2

e↵

⌘ rB,h , (23)

which holds if rh < rB,h; otherwise, if rh > rB,h, neglect-
ing the PBH mass one has

rB,e↵ ' rh


(1 � p)

rh

rB,h

+ p

� 1
p�1

 rh. (24)

Note that Eq. (24) tends to rB,h when p ! 0, as ex-
pected: When the DM halo profile is very steep and/or
the halo is very compact, as far as accreting baryons are
concerned they simply see a BH whose e↵ective mass is
the sum of the PBH and the DM halo mass. If the halo
is flu↵y or large, only a fraction of the mass of the halo
contributes to the accretion. In any case, the condition
rB,e↵ � rB,PBH must hold. This constraint must be ver-
ified and eventually imposed by hand as a lower limit if
using the approximated Eq. (24) or the RHS of Eq. (23).
We have found that the CMB constraints obtained using
this model are in agreement within 50% with the ones
obtained from results of the numerical simulations in the
mass range covered by the simulations3. We thus use
this model with p = 0.75 to compute the impact of PBH
accretion onto the CMB.

3 We checked that varying p 2 [0.50, 0.75] a↵ects our results to
below 10% level.
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Figure 4. Accretion rates of interstellar gas onto a moving, isolated PBH as a function of its velocity.
The results of [45] (solid blue line) are compared to the phenomenological prescription adopted in [15],
whereby we show the two cases the authors considered: Bondi-Hoyle-Littleton accretion of neutral
gas (orange dashed line) and gas which is considered fully ionized when the timescale for ionization
is shorter than the timescale for the BH to traverse its Bondi sphere (green dot-dashed line). The
rates are expressed as fractions of the Bondi rate, the mass of the PBH is fixed at 100M� and the
ambient gas density and temperature are set to ⇢ = 104 mp cm�3 and T = 102 K respectively. The
vertical dotted line identifies the Mach number where the accretion rate reaches the peak, i.e. where
the ionization front starts to break down.

monotonic decrease of the accretion rate with increasing BH velocity, the simulations show
a more complicated phenomenology. If the BH velocity is supersonic, but the Mach number
is below a critical value MR (MR ' 4 for T ' 104 K), a dense bow shock forms in the
upstream region; behind the bow shock, a D-type (dense) ionization front develops, and
a cometary-shaped HII region can be identified, characterized by low density and velocity.
In this regime, the gas velocity in the reference frame of the moving BH decreases with
increasing BH velocity, hence the accretion rate follows the opposite trend with respect to
the Bondi-Hoyle-Lyttleton formula, i.e. it increases with increasing BH velocity (see Fig.
4). Conversely, when the BH velocity is above MR, the ionization front becomes R-type
(rarefied), and the accretion rate decreases with the BH velocity, e↵ectively returning the
accretion process to Bondi-Hoyle-Littleton-like accretion.
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Figure 3. The snapshots of the steady-state flow in the run with
n1 = 10

5
cm

�3, MBH = 10
2 M�, T1 = 10

4
K, and v1/c1 = 2. The

bottom panel is a zoom-in view of the top panel where the entire
HII bubble is displayed. In each panel, we show the xy-slice of
the density (upper) and the temperature (lower), together with
the velocity streamlines. The outer and inner white contours cor-
respond to the surfaces of the neutral fraction xHI = 0.9 and 0.1,
respectively. The gas is moving from the right side to the left, with
the BH located at the center of the sink region (white circle).

we see that a stable, dense shell forms between the D-type
I-front and the preceding shock, alike a bow shock around
a blunt body (see, e.g., Yalinewich & Sari 2016; Keshet &
Naor 2016, for recent studies).

Let us investigate the structure of the flow in detail. In
the HII region, the gas is heated to the equilibrium tem-
perature TII ⇡ 4 – 5 ⇥ 10

4
K, determined by the balance of

the photo-ionization heating and the Ly↵ and free-free cool-
ing. The shock is isothermal due to the e�cient Ly↵ cool-
ing in the neutral gas, and the density jump in the shell
is (v1/c1)2 ⇡ 4 of the ambient value. As considered in the
analytical model in Sec. 2, the gas motion is approximately
plane-parallel except for inside the shell, where the tangen-
tially diverging motion has a significant e↵ect on the stream-
lines. The shell is rather thick (�Rshell/RIF ⇠ 0.1) and stable.
The size of the I-front, RIF ⇠ 2 ⇥ 10

4
au, agrees with the

analytic Strömgren radius in Eq. (13). In general, the flow
structure is consistent with previous 2D simulations in PR13
and agrees with the analytical model.

To understand the properties of the shell and its stabil-
ity, we investigate the dependence of the shell thickness on
the BH velocity, by performing runs with various BH veloc-
ities v1/c1 = 1.5 – 3 for n1 = 10

5
cm

�3 and MBH = 10
2

M�.
We observe stable D-type flows for the velocity range men-
tioned above, but the shell becomes unstable or disappears
(the I-front becomes R-type) for velocities v1/c1 > 3, as we
will see in the next section.

Figure 4 summarizes the main results found in this pa-
per with regard to the stability of the I-front. The points in
the figure show the ratio of the shell thickness to the size
of the I-front, �Rshell/RIF, as a function of v1/c1 for a large
set of simulations, as shown in the legend. We see that the
ratio becomes smaller, i.e., the shell becomes thinner, with
increasing v1/c1. The filled symbols refer to simulations in
which the shell is stable, while open symbols refer to simu-
lations with unstable shells.

The solid lines in the figure show �Rshell/RIF from the
analytical model described by Eq. (24) in Sec. 2.2, for sev-
eral values of TII, together with the arrows indicating the
values of vR, at which the thickness becomes zero accord-
ing to the model. For the moment, we focus on the curve
for TII = 6 ⇥ 10

4
K because the temperature inside the

HII region has approximately this value in the runs with
n1 = 10

5
cm

�3 and MBH = 10
2

M� (see Figure 3). With
the numerical factor set to ↵ = 0.5, the analytical curve
for TII = 4⇥10

4
K shows good agreement with the simulation

results for n1 = 10
5

cm
�3 and MBH = 10

2
M�. The agree-

ment is good also for all the other simulations in the figure,
justifying the validity of our analytical model, as well as the
choice of ↵ = 0.5. The analytical model predicts that the
thickness approaches zero as v1 approaches vR. In the runs
with n1 = 10

5
cm

�3 and MBH = 10
2

M�, however, the shell
becomes unstable before the velocity reaches vR, as indicated
by the open symbols.

We also investigate the dependence of shell thick-
ness on n1 and MBH, in addition to the dependence
on v1. We performed runs with various v1, assuming
(n1, MBH) = (10

4
cm

�3, 10
2

M�), (10
3

cm
�3, 10

2
M�), and

(10
3

cm
�3, 10

3
M�), and plot �Rshell/RIF of the stable D-type

flows in Figure 4. We see that �Rshell/RIF becomes smaller
when decreasing n1 or MBH. It appears that �Rshell/RIF is
proportional to the parameter combination MBH n1.

According to our model, the shell thickness depends on
parameters other than v1 only because of changes of the
sound speed inside the HII region, cII. We will show below
that cII depends on MBH n1, and that this dependence can
be attributed to changes in the temperature profile inside
the ionized region. In Fig. 5, we plot the upstream tem-
perature profiles along the axis of BH motion in the runs
with v1/c1 = 2 and di↵erent n1 and MBH. We normal-
ize the radius by the size of the I-front to directly compare
the temperature profiles. We see in Fig. 5 that the steep-
ness of the temperature rise inside the HII region has signif-
icant di↵erences among the runs. For the run with BH mass
MBH = 10

2
M� and n1 = 10

5
cm

�3, the temperature rapidly
reaches the almost constant value 5 – 6 ⇥ 10

4
K inside the

HII region, while the rise in temperature becomes slower
as n1 decreases. Therefore, in the lower-density case with
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4. ACCRETION PHYSICS OF ISOLATED BLACK HOLES

2) Temperature-limited case: Object at rest, cloud spherically accreting

r
~v

Figure 5: Schematic of the
temperature-limited case. A cloud
of gas accretes spherically onto an
object represented by the black dot.
The shading gives an indication for the
density of the gas: darker is denser. The
dotted ring at radial distance r from the
object gives an intuition for equation
10. For this, also the velocity ~v and the
inward flux (gray arrows) of the gas have
been indicated.

The second case considered is that the object is at rest and an infinite cloud of gas
accretes steadily and spherically symmetric onto the object. This scenario is depicted in
figure 5 and has first been considered by [78]. Following [79], the accretion rate can be
derived as follows. Starting from the continuity equation and making the assumption of
a steady flow (@⇢/@t = 0) and spherical symmetry (~v = vr̂), we get:

@⇢

@t
+ ~r · (⇢~v) = 0 !

1

r2
@

@r

�
r2⇢v

�
= 0. (9)

This implies that the combination r2⇢v is constant as a function of the radial distance,
and thus the same everywhere. Integrating the right side of equation 9 over a sphere of
radius r we obtain the accretion rate Ṁ ,

Ṁ = 4⇡r2⇢(�v), (10)

where we included a minus sign in the definition of Ṁ to make it positive, since we have
v < 0 for accreting gas. Similar to the accretion rate of last paragraph, this equation
simply states that the accretion rate is the inward flux of mass ⇢(�v) through the surface
4⇡r2 of a sphere with radius r. Since Ṁ is independent of r, we can relate it to the
ambient values of the density and sound speed by evaluating Ṁ at the sonic radius rs.
For this we first need to relate the density and sound speed of the gas at the sonic radius
to their ambient values.

To this end, starting with the Euler equation and again using the assumptions of
steady flow (@~v/@t = 0) and spherical symmetry (~v = vr̂) we have:

⇢
@~v

@t
+ ⇢

⇣
~v · ~r

⌘
~v = �~rP + ~f ! ⇢v

dv

dr
= �

dP

dr
�

GM⇢

r2
(11)

where we used gravity for the force density term, ~f = �(GM⇢/r2)r̂, and consequently
only considered the radial component. With some algebraic manipulation and the def-

inition of the sound speed, cs = (dP/d⇢)1/2
0

, this equation can be rewritten in a more
convenient form:

✓
1 �

c2s
v2

◆
d(v2)

dr
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2GM

r2

✓
1 �

2c2sr

GM

◆
. (12)
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we see that a stable, dense shell forms between the D-type
I-front and the preceding shock, alike a bow shock around
a blunt body (see, e.g., Yalinewich & Sari 2016; Keshet &
Naor 2016, for recent studies).

Let us investigate the structure of the flow in detail. In
the HII region, the gas is heated to the equilibrium tem-
perature TII ⇡ 4 – 5 ⇥ 10

4
K, determined by the balance of

the photo-ionization heating and the Ly↵ and free-free cool-
ing. The shock is isothermal due to the e�cient Ly↵ cool-
ing in the neutral gas, and the density jump in the shell
is (v1/c1)2 ⇡ 4 of the ambient value. As considered in the
analytical model in Sec. 2, the gas motion is approximately
plane-parallel except for inside the shell, where the tangen-
tially diverging motion has a significant e↵ect on the stream-
lines. The shell is rather thick (�Rshell/RIF ⇠ 0.1) and stable.
The size of the I-front, RIF ⇠ 2 ⇥ 10

4
au, agrees with the

analytic Strömgren radius in Eq. (13). In general, the flow
structure is consistent with previous 2D simulations in PR13
and agrees with the analytical model.

To understand the properties of the shell and its stabil-
ity, we investigate the dependence of the shell thickness on
the BH velocity, by performing runs with various BH veloc-
ities v1/c1 = 1.5 – 3 for n1 = 10

5
cm

�3 and MBH = 10
2

M�.
We observe stable D-type flows for the velocity range men-
tioned above, but the shell becomes unstable or disappears
(the I-front becomes R-type) for velocities v1/c1 > 3, as we
will see in the next section.

Figure 4 summarizes the main results found in this pa-
per with regard to the stability of the I-front. The points in
the figure show the ratio of the shell thickness to the size
of the I-front, �Rshell/RIF, as a function of v1/c1 for a large
set of simulations, as shown in the legend. We see that the
ratio becomes smaller, i.e., the shell becomes thinner, with
increasing v1/c1. The filled symbols refer to simulations in
which the shell is stable, while open symbols refer to simu-
lations with unstable shells.

The solid lines in the figure show �Rshell/RIF from the
analytical model described by Eq. (24) in Sec. 2.2, for sev-
eral values of TII, together with the arrows indicating the
values of vR, at which the thickness becomes zero accord-
ing to the model. For the moment, we focus on the curve
for TII = 6 ⇥ 10

4
K because the temperature inside the

HII region has approximately this value in the runs with
n1 = 10

5
cm

�3 and MBH = 10
2

M� (see Figure 3). With
the numerical factor set to ↵ = 0.5, the analytical curve
for TII = 4⇥10

4
K shows good agreement with the simulation

results for n1 = 10
5

cm
�3 and MBH = 10

2
M�. The agree-

ment is good also for all the other simulations in the figure,
justifying the validity of our analytical model, as well as the
choice of ↵ = 0.5. The analytical model predicts that the
thickness approaches zero as v1 approaches vR. In the runs
with n1 = 10

5
cm

�3 and MBH = 10
2

M�, however, the shell
becomes unstable before the velocity reaches vR, as indicated
by the open symbols.

We also investigate the dependence of shell thick-
ness on n1 and MBH, in addition to the dependence
on v1. We performed runs with various v1, assuming
(n1, MBH) = (10

4
cm

�3, 10
2

M�), (10
3

cm
�3, 10

2
M�), and

(10
3

cm
�3, 10

3
M�), and plot �Rshell/RIF of the stable D-type

flows in Figure 4. We see that �Rshell/RIF becomes smaller
when decreasing n1 or MBH. It appears that �Rshell/RIF is
proportional to the parameter combination MBH n1.

According to our model, the shell thickness depends on
parameters other than v1 only because of changes of the
sound speed inside the HII region, cII. We will show below
that cII depends on MBH n1, and that this dependence can
be attributed to changes in the temperature profile inside
the ionized region. In Fig. 5, we plot the upstream tem-
perature profiles along the axis of BH motion in the runs
with v1/c1 = 2 and di↵erent n1 and MBH. We normal-
ize the radius by the size of the I-front to directly compare
the temperature profiles. We see in Fig. 5 that the steep-
ness of the temperature rise inside the HII region has signif-
icant di↵erences among the runs. For the run with BH mass
MBH = 10

2
M� and n1 = 10

5
cm

�3, the temperature rapidly
reaches the almost constant value 5 – 6 ⇥ 10

4
K inside the

HII region, while the rise in temperature becomes slower
as n1 decreases. Therefore, in the lower-density case with
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4. ACCRETION PHYSICS OF ISOLATED BLACK HOLES

2) Temperature-limited case: Object at rest, cloud spherically accreting

r
~v

Figure 5: Schematic of the
temperature-limited case. A cloud
of gas accretes spherically onto an
object represented by the black dot.
The shading gives an indication for the
density of the gas: darker is denser. The
dotted ring at radial distance r from the
object gives an intuition for equation
10. For this, also the velocity ~v and the
inward flux (gray arrows) of the gas have
been indicated.

The second case considered is that the object is at rest and an infinite cloud of gas
accretes steadily and spherically symmetric onto the object. This scenario is depicted in
figure 5 and has first been considered by [78]. Following [79], the accretion rate can be
derived as follows. Starting from the continuity equation and making the assumption of
a steady flow (@⇢/@t = 0) and spherical symmetry (~v = vr̂), we get:

@⇢

@t
+ ~r · (⇢~v) = 0 !

1

r2
@

@r

�
r2⇢v

�
= 0. (9)

This implies that the combination r2⇢v is constant as a function of the radial distance,
and thus the same everywhere. Integrating the right side of equation 9 over a sphere of
radius r we obtain the accretion rate Ṁ ,

Ṁ = 4⇡r2⇢(�v), (10)

where we included a minus sign in the definition of Ṁ to make it positive, since we have
v < 0 for accreting gas. Similar to the accretion rate of last paragraph, this equation
simply states that the accretion rate is the inward flux of mass ⇢(�v) through the surface
4⇡r2 of a sphere with radius r. Since Ṁ is independent of r, we can relate it to the
ambient values of the density and sound speed by evaluating Ṁ at the sonic radius rs.
For this we first need to relate the density and sound speed of the gas at the sonic radius
to their ambient values.

To this end, starting with the Euler equation and again using the assumptions of
steady flow (@~v/@t = 0) and spherical symmetry (~v = vr̂) we have:

⇢
@~v

@t
+ ⇢

⇣
~v · ~r

⌘
~v = �~rP + ~f ! ⇢v

dv

dr
= �

dP

dr
�

GM⇢

r2
(11)

where we used gravity for the force density term, ~f = �(GM⇢/r2)r̂, and consequently
only considered the radial component. With some algebraic manipulation and the def-

inition of the sound speed, cs = (dP/d⇢)1/2
0

, this equation can be rewritten in a more
convenient form:

✓
1 �

c2s
v2

◆
d(v2)

dr
= �

2GM

r2

✓
1 �

2c2sr

GM

◆
. (12)
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implies on the one hand that Eq. 3, stating the mass conservation
through the front along the direction of displacement of the BH, is
no longer valid. On the other hand, since the velocity past the shock
is now lower than v⇡ , the jump conditions at the ionization front
can be solved. One should now consider, however, two sets of jump
conditions associated to the two fronts: the shock and the ionization
front. Park and Ricotti instead observed through simulations that,
in this regime, the velocity inside the ionized region is vin ⇡ 2s,in.
This relation, promoted to an equality, can be used together with
Eq. 4 to compute the density din. This way, for v⇡  vBH  v' ,
we obtain:

din = d0
in ⌘ d

v2
BH + 22

s

2 22
s,in

,

vin = 2s,in .

(7)

Thus we have in summary:

din =

8>>>>><
>>>>>:

d�in , vBH � vR ,

d0
in , vD < vBH < vR ,

d+in , vBH  vD ,

(8)

and

vin =

8>>>>>><
>>>>>>:

d

din
vBH , vBH � vR ,

2s,in , vD < vBH < vR ,

d

din
vBH , vBH  vD .

(9)

Plugging these equations back into Eq. 2 finally gives the de-
sired accretion rate expressed in terms of the BH speed and the
properties of the neutral medium it is moving through.

Notice in particular that in the velocity range vD  vBH  vR
we get:

§"PR13 = c
(⌧")

2d(v2
BH + 22

s )
p

2 25
s,in

, (10)

which increases quadratically with the BH velocity, in sharp contrast
to the behaviour of the BHL rate, which decreases with velocity. This
behaviour is the main feature introduced by the PR13 model, and is
due to the formation around these objects of the aforementioned bow
shock that deflects part of the gas away from the BH. The velocity
dependence of the BHL rate is recovered in the high velocity regime,
vBH > vR, where both rates present a / v�3

BH dependence. The
complete velocity dependence of the PR13 rate is shown in figure 1,
for varied gas densities, BH masses, and sound speeds of the ionized
region. For comparison, the BHL rate with _ = 1 is also shown. We
can observe in this figure how the BHL rate decreases monotonically
with velocity, whereas the PR13 rate peaks at vBH = vR = 2 2s,in
and is suppressed at lower velocity by the presence of the bow shock.

For E < vD, the rate increases again. However, notice that this
transition typically happens at velocities of ⇡ 0.1 km/s (see Eq. 6),
which are of little relevance for this work and not shown in figure.

The di�erent velocity dependence of the PR13 rate compared
to the BHL rate has important consequences when studying the
emission properties of a BH population characterized by a given
velocity distribution. According to the BHL prescription, the low-
velocity tail of the population is the easiest to detect. Following
PR13, the highest emissions are instead associated to BHs with
intermediate velocities.

Furthermore, BHL can predict very high accretion rates if

n = 103cm-3

cs = 1 km s-1

M = 7.8 M⊙

PR
BHL, λ = 1

csin = 10 km s-1

csin = 25 km s-1

csin = 50 km s-1
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vBHkm s-1
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M

⊙
ye
ar

-1


Figure 1. Accretion rate as a function of the BH speed. We show the
accretion rate obtained according to the PR13 and BHL models, as a function
of the BH speed and other relevant parameters. For the BHL rate, we set
the suppression factor _ = 1, to allow for a more direct comparison. The
to models agree at high velocity, but predictions di�er by many orders of
magnitude in the low velocity range.

the speeds are low enough, which can easily lead to overshooting
experimental bounds, while the highest rates predicted by PR13 are
orders of magnitude smaller.

As a final remark, using Eq. 10 to express the peak of the PR13
rate in terms of the Eddington accretion rate §"Edd :

§"PR13
��
vBH=vR

§"Edd
⇡ 10�4

✓
"BH

10 "�

◆ ✓
d/<?

103 cm�3

◆ ✓
2B,in

25 km/s

◆�3
,

(11)

one can see that the accretion rate will always be highly sub-
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Figure 4. Accretion rates of interstellar gas onto a moving, isolated PBH as a function of its velocity.
The results of [45] (solid blue line) are compared to the phenomenological prescription adopted in [15],
whereby we show the two cases the authors considered: Bondi-Hoyle-Littleton accretion of neutral
gas (orange dashed line) and gas which is considered fully ionized when the timescale for ionization
is shorter than the timescale for the BH to traverse its Bondi sphere (green dot-dashed line). The
rates are expressed as fractions of the Bondi rate, the mass of the PBH is fixed at 100M� and the
ambient gas density and temperature are set to ⇢ = 104 mp cm�3 and T = 102 K respectively. The
vertical dotted line identifies the Mach number where the accretion rate reaches the peak, i.e. where
the ionization front starts to break down.

monotonic decrease of the accretion rate with increasing BH velocity, the simulations show
a more complicated phenomenology. If the BH velocity is supersonic, but the Mach number
is below a critical value MR (MR ' 4 for T ' 104 K), a dense bow shock forms in the
upstream region; behind the bow shock, a D-type (dense) ionization front develops, and
a cometary-shaped HII region can be identified, characterized by low density and velocity.
In this regime, the gas velocity in the reference frame of the moving BH decreases with
increasing BH velocity, hence the accretion rate follows the opposite trend with respect to
the Bondi-Hoyle-Lyttleton formula, i.e. it increases with increasing BH velocity (see Fig.
4). Conversely, when the BH velocity is above MR, the ionization front becomes R-type
(rarefied), and the accretion rate decreases with the BH velocity, e↵ectively returning the
accretion process to Bondi-Hoyle-Littleton-like accretion.
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Figure 1: Accretion rate as a function of redshift for the BHL model (blue) and the PR model (red)
for a 103

M� PBH, assuming the setup described in §2.1. For the PR model, three di↵erent values are
shown for the sound speed within the ionized region cs,in. The ⇤CDM parameters used for this plot, as
well as plots below where a fixed cosmology is implied, are given by:

�
⌦b, ⌦c, H0, ln 1010

As, ns, zreio

 
=

{0.02231, 0.1198, 67.90, 3.043, 0.9674, 7.4}. For this plot we set fPBH = 10�15 to remove feedback
e↵ects on the background cosmology.

2.3 The Park-Ricotti accretion model

The impact of radiative feedback on the accretion process was studied by Park and Ricotti
through hydro-dynamical simulations of accretion of a homogeneous medium into a compact
object [18–20]. The simulations showed the formation of an ionization front, in some velocity
regimes preceded by a shock wave, and simultaneously a sharp reduction of the accretion
rate. The authors were able to reproduce the accretion rates obtained in the simulations via
a simple analytical model, the PR model, which we briefly describe here.

The high-energy radiation emitted in the accretion process ionizes the gas surrounding
it. Its temperature and density are a↵ected, as well as the velocity with which it flows around
the BH. This variation in the properties of the gas in turn is expected to a↵ect the accretion
rate. The PR model assumes that the BHL accretion formula, Eq. (2.4), is valid within the
ionized region

ṀPR = 4⇡
(GM)2⇢in

(v2
in

+ c
2

s,in
)3/2

, (2.7)

where ⇢in, vin, cs,in are, respectively, the density, relative velocity, and sound speed character-
izing the ionized gas. The sound speed cs,in is set to a constant value, with cs,in � cs. The
density ⇢in and relative speed vin are obtained from the corresponding quantities ⇢b and vrel,
by imposing the one-dimensional conservation of mass and the equilibrium of forces across
the ionization front (we assume an ideal gas and that the process is isothermal [20, 36])
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Figure 4: The free electron fraction, Xe, as a function of redshift, showing the e↵ect of a monochro-
matic PBH population with mass MPBH = 103

M�, for di↵erent PBH abundances, as labelled.
The left figure is for the BHL accretion scenario, and the right figure shows the PR scenario, with
cs,in = 23 km/s. The standard scenario ⇤CDM cosmology (with parameters described in the caption
of Figure 1) is described by the solid black line.

101 102 103
10�11

10�10

[�
(�

+
1)

/2
�
]C

T
T

�

M = 103M�

Standard

BHL, fPBH = 10�3

PR, fPBH = 10�3

BHL Halo, fPBH = 10�6

PR Halo, fPBH = 10�3

101 102 103

multipole �

�0.1

0.0

0.1

C
�
(P

B
H

)
C

�
(�

C
D

M
)
�

1 101 102 103

10�15

10�14

10�13

10�12

[�
(�

+
1)

/2
�
]C

E
E

�

101 102 103

multipole �

0

2

4

C
�
(P

B
H

)
C

�
(�

C
D

M
)
�

1

Figure 5: The impact of the accretion recipe on the CMB TT (left) and EE (right) power spectrum
for a monochromatic population of PBHs with masses M = 103

M�, assuming the fixed ⇤CDM
cosmology described in the caption of Figure 1.

processes responsible for such alterations are discussed in detail for instance in [3, 13]. The
key point is the broadening of the visibility function towards lower redshift, which mainly
implies a suppression of the secondary peaks due to an increase in the time available for the
dissipation of acoustic oscillations [57].

To compute the CMB and large scale structure observables corresponding to the simu-
lated evolution of linear perturbations from the early universe, we use the latest version of the
publicly available Boltzmann solver CLASS [58]. In particular, we implement modifications to
CLASS, altering the thermal history of the universe to include the e↵ect of accreting PBHs.
We base our approach on the framework presented in ExoCLASS [54], making modifications to
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That analysis was carried out assuming BHL accretion; in this work, we will extend this
modeling to assess the role of DM mini-halos in the context of the PR model.

3.1 Analytical modelling

As discussed in §2.3, the PR model is based on the description of a BHL accretion problem
taking place within an ionized region around the BH. This consideration allows us to apply
a similar treatment for the inclusion of DM mini-halos to that employed in [14, 46] for BHL.
This consists in replacing the Bondi radius rB in Eq. (2.6) with an e↵ective radius r

e↵

B
, which

accounts for the gravitational pull of the DM halo. We write the accretion rate as

Ṁ = 4⇡⇢b ve↵ (re↵B )2 . (3.1)

For the BHL model, v
BHL

e↵
=
�
c
2
s + v

2

rel

�
1/2

. In the case of the PR model, the relevant e↵ective

velocity must be defined within the ionized region, hence we set v
PR

e↵
= (c2

s,in
+ v

2

in
)1/2. Given

an e↵ective velocity, the e↵ective Bondi radius r
e↵

B
is the radius that satisfies the following

equation

v
2

e↵
=

GM

r
� �h(r) , (3.2)

where �h(r) is the gravitational potential generated by the DM mini-halos. In the PR case,
this approach is self-consistent as long the e↵ective radius obtained in this way does not
exceed the size of the ionized region. We verify that this is true for the parameters relevant
to this work, assuming, as estimated in [47], that the size of the ionized region is around 102

times larger than the Bondi radius computed within the ionized region.
The square root of the right-hand side of Eq. (3.2) represents an escape velocity, which

depends on r. For r < r
e↵

B
, this velocity is larger than the e↵ective velocity ve↵ that charac-

terizes the gas, and the gas can be captured and accreted by the PBH. Conversely, when ve↵

is larger than this quantity, due to either a large sound speed or large flow velocity of the
gas around the PBH, the gas is able to escape the gravitational field of the PBH.

We model the DM mini-halos with a power law density profile ⇢h(r) and a sharp cuto↵
at the halo radius r = rh

⇢h(r) = ⇢h,0

✓
r

rh

◆�↵

, r < rh. (3.3)

Motivated by the discussion at the beginning of this section, we set the power law index to
↵ = 9/4. The halo radius and the normalization constant depend on the PBH mass and
evolve with redshift. Adopting the same model as the one employed in [14], we set the total
halo mass Mh and halo radius rh respectively to

Mh '
3000

1 + z
M ,

rh ' 58 pc (1 + z)�1

✓
Mh

M�

◆
1/3

.

(3.4)

The gravitational potential generated by the DM mini-halos is then given by

�h(r) =

8
>><

>>:

GMh

↵ � 2

 
3 � ↵

rh
�

r
2�↵

r
3�↵

h

!
, r < rh ,

�
GMh

r
, r � rh .

(3.5)
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at the halo radius r = rh

⇢h(r) = ⇢h,0

✓
r

rh

◆�↵

, r < rh. (3.3)

Motivated by the discussion at the beginning of this section, we set the power law index to
↵ = 9/4. The halo radius and the normalization constant depend on the PBH mass and
evolve with redshift. Adopting the same model as the one employed in [14], we set the total
halo mass Mh and halo radius rh respectively to

Mh '
3000

1 + z
M ,

rh ' 58 pc (1 + z)�1

✓
Mh

M�

◆
1/3

.

(3.4)

The gravitational potential generated by the DM mini-halos is then given by

�h(r) =

8
>><

>>:

GMh

↵ � 2

 
3 � ↵
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2�↵

r
3�↵
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!
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�
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r
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Figure 2: Graphical representation of the right-hand-side of Eq. (3.2). The solid lines trace the
sum of the total (PBH plus DM mini-halo) potential at di↵erent redshifts. The horizontal lines show
the values of the e↵ective velocity ve↵ within the physical setup described in §2.1, for a fixed ⇤CDM
cosmology with fPBH = 10�15. For the BHL model, ve↵ varies with z. Within the PR model, it
remains almost constant. The intersection between the horizontal lines and the curves describing the
potential determines the value of the e↵ective Bondi radius r
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(z), denoted here by r
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and r
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for the BHL and PR models, respectively.

Combining Eqs. (3.2) – (3.5), we obtain an equation for the e↵ective Bondi radius for a given
value of the e↵ective velocity

v
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(3.6)

From here we can obtain the e↵ective Bondi radius for the BHL and PR cases, setting
ve↵ = v

BHL

e↵
and ve↵ = v

PR

e↵
, respectively. We solve Eq. (3.6) numerically for both models.

Having obtained the e↵ective Bondi radius, we compute the enhanced accretion rate through
Eq. (3.1).

3.2 Impact on the accretion rate: BHL and PR scenarios

In the BHL case, we find that the e↵ective Bondi radius increases significantly towards low
redshifts, becoming larger than the Bondi radius in the absence of DM mini-halos by orders
of magnitude. In contrast, we find that when the PR model is considered, only a slight
increase in the e↵ective radius occurs, and only for large PBH masses. In most cases, the
growth is negligible.

The reason for this strikingly di↵erent behavior is illustrated in Figure 2. We show the
evolution with redshift of the total potential ��tot = ��BH � �h, with �BH = �GM/r, and
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Feedback VS DM Mini-halos
• The Park-Ricotti model can be recast into a Bondi problem inside the ionized radius 

10�4 10�1 102 105

r (pc)

10�3

10�2

10�1

100

101

102

103

104

�
G

M
/r

�
�

h
(r

)
(k

m
/s

)

M = 10 M�

re
↵ B
,B

H
L
(1

0)

re
↵ B
,B

H
L
(1

00
)

re
↵ B
,B

H
L
(7

00
)

re
↵ B
,P

R
(

70
0)

10
0,

10
,

vBHL
e↵ (10)

vBHL
e↵ (100)

vBHL
e↵ (z = 700)

vPR
e↵ (cs,in = 23 km/s)

z = 700

z = 100

z = 10

10�4 10�1 102 105

r (pc)

M = 104 M�

re
↵ B
,B

H
L
(1

0)

re
↵ B
,B

H
L
(1

00
)

re
↵ B
,B

H
L
(7

00
)

vBHL
e↵ (10)

vBHL
e↵ (100)

vBHL
e↵ (z = 700)

vPR
e↵ (cs,in = 23 km/s)

re
↵ B
,P

R
(

70
0)

10
0,

10
,

Figure 2: Graphical representation of the right-hand-side of Eq. (3.2). The solid lines trace the
sum of the total (PBH plus DM mini-halo) potential at di↵erent redshifts. The horizontal lines show
the values of the e↵ective velocity ve↵ within the physical setup described in §2.1, for a fixed ⇤CDM
cosmology with fPBH = 10�15. For the BHL model, ve↵ varies with z. Within the PR model, it
remains almost constant. The intersection between the horizontal lines and the curves describing the
potential determines the value of the e↵ective Bondi radius r
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Combining Eqs. (3.2) – (3.5), we obtain an equation for the e↵ective Bondi radius for a given
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From here we can obtain the e↵ective Bondi radius for the BHL and PR cases, setting
ve↵ = v

BHL

e↵
and ve↵ = v

PR

e↵
, respectively. We solve Eq. (3.6) numerically for both models.

Having obtained the e↵ective Bondi radius, we compute the enhanced accretion rate through
Eq. (3.1).

3.2 Impact on the accretion rate: BHL and PR scenarios

In the BHL case, we find that the e↵ective Bondi radius increases significantly towards low
redshifts, becoming larger than the Bondi radius in the absence of DM mini-halos by orders
of magnitude. In contrast, we find that when the PR model is considered, only a slight
increase in the e↵ective radius occurs, and only for large PBH masses. In most cases, the
growth is negligible.

The reason for this strikingly di↵erent behavior is illustrated in Figure 2. We show the
evolution with redshift of the total potential ��tot = ��BH � �h, with �BH = �GM/r, and
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• The effective velocity of the PR model is larger (larger, constant sound speed within the 
ionized region) 

• The effective Bondi radius is smaller —> Less “accretion boost” 
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Figure 6: Constraints at the 95% probability from the posterior of fPBH – which describes the
cosmological abundance of PBHs as a fraction of the DM abundance, assuming a monochromatic PBH
mass function – obtained within di↵erent accretion recipes and for a selected range of PBH masses.
In light blue is the bound assuming BHL accretion with a disk geometry and with either DM halos
included (dashed, “CMB (BHL HALO)”) or not included (solid, “CMB (BHL)”). In red is the bound
assuming PR accretion with a disk geometry and with either DM halos included (dashed, “CMB (PR
HALO)”) or not included (solid, “CMB (PR)”). The dark blue line (“CMB (Conservative)”) shows
the CMB accretion bound following the spherical accretion recipe of §6.4. The most stringent and
relevant PBH bounds in this mass regime are also shown from gravitational waves [74, 75], Radio and
X-Ray [76], Microlensing [77–79], Dynamical [80, 81], and Dwarf Galaxy Heating [82]. We make use
of [83] for plotting.

regime, as discussed in §2.3, the PR model predicts accretion rates higher by a factor ⇠ �

than the BHL model. On the other hand, at lower redshifts, the velocity decreases and the
PR model enters its intermediate regime, where a shock front is formed and the accretion
rate becomes very strongly suppressed. The two e↵ects partially compensate, resulting in a
di↵erence of a factor [2.5 � 3] between the two bounds. In conclusion, while one may have
naively expected a weakening of the bound in the PR case as a consequence of the low-velocity
suppression of the accretion rate, the aforementioned cancellation actually slightly moves the
bound in the opposite direction, making it more stringent.

Varying the value of the sound speed cs,in can change the ratio between the PR and
BHL accretion rates, as is shown in Figure 1. We analyze the impact of this parameter on
the PR bound in section §6.1.

– 17 –
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Main Result: Radiation feedback weakens the bound

Made with Cobaya+CLASS (modified to account for energy injection) 
2018 low-l Planck TT.EE, high-l Planck TT.TE.EE, lensing, ACT, BAO
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Conclusions

• PBHs can be a portion of the DM. Cosmological 
accretion bounds are the strongest in the high-mass 
domain.  

• We presented a comprehensive assessment of the 
uncertainty on the CMB bound.  

•Crucial role of radiation feedback: Modeling 
radiation feedback weakens the bound including mini-
halos
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Primordial Black Hole phenomenology

Credit: Bradley Kavanagh, https://github.com/bradkav/PBHbounds
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PBH constraintsWhy a sub-dominant population would matter?4

(UCMHs) have ⇢(r) / r
�9/4 density profiles, which has

been confirmed by recent 3D simulations [16]. Since fPBH

is at or well below the percent-level in all but one of our
detection scenarios, we can assume that UCMHs form in
isolation, so we neglect the e↵ects of PBH-PBH interac-
tions on the UCMH profile.

Due to the steepness of the profile the DM density
reaches a maximum value at the “annihilation plateau”,
where the DM annihilation rate becomes equal to the
Hubble rate. Due to the large resulting gamma-ray lu-
minosities, UCMHs in the Milky Way would appear as
bright point sources with no counterparts in other wave-
lengths. Previous analyses searching the 3FGL for DM
subhalos [60–62] have identified 19 bright, high-latitude,
non-variable unassociated point sources that are spec-
trally compatible with annihilating DM. As described in
detail in Appendix A, we perform a Monte Carlo simula-
tion to assess the observability of UCMHs by Fermi. We
then use this to determine the 95% confidence level (CL)
upper bound on the WIMP annihilation cross-section in
the zero-velocity limit (�vrel)0. This upper limit depends
on the PBHs’ spatial distribution which we assume tracks
the Milky Way DM distribution. We fix fPBH to the 5th
percentile of the posterior P (fPBH|N), derived in the pre-
vious sections for the detection of N PBH candidates.
We conservatively assume that all 19 compatible unasso-
ciated point sources are UCMHs and set the upper limit
on (�vrel)0 by comparing with the expected number of
UCMHs passing cuts on their integrated gamma-ray flux
and galactic latitude (given MPBH, m� and N).

Annihilation in UCMHs outside the Milky Way over all
redshifts contributes to the di↵use, isotropic extragalac-
tic background (EGB) [63–65], which has been measured
by Fermi [66]. This provides an additional very robust
constraint on the DM self-annihilation cross section since
it requires no assumptions about the PBH spatial distri-
bution. To set a conservative bound we do not assume a
particular background model. Instead, we compute the
expected gamma-ray flux from UCMHs in each of Fermi’s
energy bins, and calculate the likelihood of such an excess
above the observed flux using the statistical and system-
atic uncertainties. As for the point source constraints,
we fix fPBH to the 5th percentile for a given detection
scenario.

An important di↵erence with regard to standard indi-
rect detection analyses is the scaling of signals with the
fractional WIMP abundance f� = ⌦�/⌦DM for under-
abundant thermal relics. Typically, the DM annihilation
rate depends on the combination f�

2(�vrel)0 since it fac-
tors into terms dependent on the integrated DM density
profile squared (J-factor) and the self-annihilation cross
section. In the PBH scenario, the DM density profile it-
self depends on (�vrel)0 since this sets the radius of the
annihilation plateau. As a result, the DM annihilation
rate (and thus the extragalactic di↵use flux from PBHs
and expected number of unassociated point sources) de-
pends on the combination f�

4(�vrel)0; this is derived in
Appendix A.
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FIG. 2. Constraints on DM self-annihilation cross sec-

tion. The solid lines correspond to the 95% CL upper limits
obtained assuming a small number of PBH detections with
LIGO/Virgo O3 (blue), Einstein Telescope (ET, orange) and
SKA (green). The lower dashed lines correspond to con-
straints which would be obtained if the number of PBH ob-
servations are as large as allowed by current limits. The dark
grey region is the envelope of 95% CL profile likelihood con-
tours for several supersymmetric models, while the light grey
region is for singlet scalar scenarios. The horizontal dotted
black line indicates the standard thermal relic cross section
3⇥10�26 cm3/s. The angled dotted black line shows the lower
bound from unitarity for s-wave annihilation. �

Results and discussion. For each detection scenario in
Table I we show as function of WIMP mass the 95% CL
upper limit on f

4

�(�vrel)0 in Fig. 2, where f� = ⌦�/⌦DM

is the fractional contribution of a particle species to the
cosmic DM density. This allows us to compare our pro-
jections with the theoretical predictions in cases where
new particles constitute only a subdominant component
of DM. The colored curves show the most stringent con-
straint arising from gamma-ray observations at a given
WIMP mass, assuming annihilation into b̄b. For our pro-
jected limits assuming a small number of PBH detections
(solid lines), point source constraints dominate at low
WIMP mass, while di↵use constraints are more relevant
at high mass. This can be seen as a ‘kink’ in each of
the solid lines, above which di↵use constraints dominate.
For larger numbers of PBH detections (dashed lines), dif-
fuse constraints generally dominate (see Appendix A for
a more detailed comparison of the limits).

We find that a detection of O(10) PBHs with any of the
methods described above would rule out large ranges of
standard-model extensions with stable relics at the elec-
troweak scale. To illustrate this, we show in dark grey the
envelope of the 95% CL profile-likelihood contours for the
MSSM7 [67] and various GUT-scale SUSY models [68]
obtained by the GAMBIT collaboration. In light grey,
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Observational constraints on gamma rays produced by the annihilation of weakly interacting

massive particles around primordial black holes (PBHs) imply that these two classes of Dark Matter

candidates cannot coexist. We show here that the successful detection of one or more PBHs by radio

searches (with the Square Kilometer Array) and gravitational waves searches (with LIGO/Virgo and

the upcoming Einstein Telescope) would set extraordinarily stringent constraints on virtually all

weak-scale extensions of the Standard Model with stable relics, including those predicting a WIMP

abundance much smaller than that of Dark Matter. Upcoming PBHs searches have in particular

the potential to rule out almost the
entire

parameter space of popular theories such as the minimal

supersymmetric standard model and scalar singlet Dark Matter. � �

Introdu
ction.

The formation and growth of black

holes (BHs) inevitably modifies the Dark Matter (DM)

distribution around them. If DM is in the form of

weakly interacting massive particles (WIMPs) which self-

annihilate, the increase in DM density can significantly

boost the annihilation rate. This process has been dis-

cussed in the context of supermassive BHs at the center

of galaxies [1–7] and intermediate-mass BHs [8–10]. The

argument has been more recently extended to the case

of primordial black holes (PBHs), which can form before

Big Bang nucleosynthesis [11, 12] and could constitute

a significant, yet subdominant, fraction of DM. In this

case, the WIMP annihilation rate around PBHs would

lead to a gamma-ray background exceeding the one ob-

served by the Fermi Large Area Telescope (LAT), leading

to stringent constraints on the relative PBH abundance

fPBH
= ⌦PBH/⌦DM

[13–16].

In this letter, we explore the compatibility of PBHs and

WIMP DM from the opposite viewpoint. We focus on

the prospects for discovering PBHs with upcoming radio

and gravitational wave (GW) searches, and on the impli-

cations such a discovery would have on even a small relic

density of WIMPs in the Universe. Specifically, we con-

sider three discovery scenarios: i) The detection of GWs

produced by the merger of BHs with mass M . 1M�

with LIGO/Virgo; ii) The detection of GWs produced by

the merger of O(10M�) BHs at redshift z > 40 with the

Einstein Telescope; iii) The detection of the radio emis-

sion produced by the accretion of gas onto 1–1000 M�

BHs with the planned Square Kilometer Array (SKA).

The scenarios we consider are summarized in Table I.

We estimate the abundance of PBHs in each scenario,

given a number of detections (Fig. 1) and, from that,
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and symmetric 90% credible intervals [17] (shaded region) of

fPBH
= ⌦PBH/⌦DM, assuming the observation

of N PBH

candidates. In blue, we assume the observation of BH merg-

ers with component masses of 0.5 M� during LIGO O3. In

orange, we assume BH mergers with component masses of

10 M� are observed at redshift z � 40 during 1 year of oper-

ation of Einstein Telescope. In green, we assume the obser-

vation of 100 M� PBHs in the Milky Way in radio and X-ray

searches. The grey hatched boundaries show the current 95%

upper limit on fPBH
for each PBH mass. �

we calculate the gamma-ray luminosity of WIMP over-

densities around PBHs in the Universe. By comparing

this with the observed di↵use extragalactic
gamma-ray

flux and with unidentified gamma-ray point sources in

the 3FGL Fermi -LAT catalogue, we show that a posi-

tive detection of even a small number of PBHs in any

of the above scenarios would set extraordinarily strin-

gent constraints on weak-scale extensions of the Stan-
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Uncertainty: radiation efficiency
4.1 Energy injection from accreting matter

The total energy injection into the medium per unit volume is given by

d2
E

dV dt

����
inj

= LnPBH = LfPBH

⇢DM

M
, (4.1)

where L is the bolometric accretion luminosity of a PBH of mass M , which is a function
of the accretion rate Ṁ . Accretion is a very powerful energy converter. The bolometric
luminosity is related to the total influx of rest-mass energy of the accreted material via the
✏ parameter that measures the radiative e�ciency:

L = ✏Ṁc
2

. (4.2)

Here, ✏ is, in general, a function of Ṁ , and typically takes the functional form of a power law
✏(Ṁ) / Ṁ

a, where a and the normalization can vary significantly depending on whether or
not an accretion disk is formed, and on the type of accretion disk.

The basic criterion used to assess whether an accretion disk can form is to estimate the
angular momentum of the baryons: if it is large enough to keep the gas in Keplerian rotation
well beyond the innermost stable orbit, then a disk can form [48]. Following [2], the condition
for disk formation can be written as

fPBH

M

M�
⌧

✓
1 + z

730

◆
3

. (4.3)

We make the assumption that a disk always forms.2 We relax this assumption in §6.4 to
derive a conservative bound.

The complex processes that shape the transport of energy and angular momentum in the
disk and the associated non-thermal emission represent an important source of uncertainty
when assessing the CMB bound. In accretion disks, the angular momentum of the rotating
matter is gradually transported outwards by stresses (related to turbulence, viscosity, shear,
and magnetic fields), and matter flows inwards. Energy is typically transferred to the elec-
trons, which are responsible for the non-thermal cooling via synchrotron, bremsstrahlung,
and inverse Compton, and is ultimately radiated away. The accretion scenario that we are
considering is characterized by low values of the accretion rate, well below the Eddington
value. In this situation, the accretion flow is typically not dense enough to guarantee e�cient
coupling between ions and electrons, as is instead the case for thin disks [49]. Hence, the
dissipated energy is not e�ciently radiated away by the leptonic component and is advected
into the central black hole. The accretion disk that corresponds to this scenario is hot and
geometrically thick, and is usually called Advention-Dominated Accretion Flow (ADAF). The
✏ parameter in the ADAF model is linearly suppressed for smaller accretion rates.

The physics behind the suppression of the radiative e�ciency is typically captured by a
parameter called �, which quantifies the fraction of turbulent energy that heats the electrons
directly. Magneto-hydro-dynamic (MHD) turbulence is the main physical process ultimately
responsible for the transfer of energy and angular momentum in the accretion flow: turbulent
energy is dissipated at small scales via kinetic damping mechanisms that generally transfer

2We have verified a posteriori that this is mostly the case for the range of PBH masses considered in this
work for allowed values of fPBH (including those ruled out by non-CMB bounds as shown in Figure 6) and in
the redshift range that has the most constraining power, i.e., typically z ⇠ O(100 � 1000).
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4.1 Energy injection from accreting matter

The total energy injection into the medium per unit volume is given by
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inj

= LnPBH = LfPBH

⇢DM

M
, (4.1)

where L is the bolometric accretion luminosity of a PBH of mass M , which is a function
of the accretion rate Ṁ . Accretion is a very powerful energy converter. The bolometric
luminosity is related to the total influx of rest-mass energy of the accreted material via the
✏ parameter that measures the radiative e�ciency:

L = ✏Ṁc
2

. (4.2)

Here, ✏ is, in general, a function of Ṁ , and typically takes the functional form of a power law
✏(Ṁ) / Ṁ

a, where a and the normalization can vary significantly depending on whether or
not an accretion disk is formed, and on the type of accretion disk.

The basic criterion used to assess whether an accretion disk can form is to estimate the
angular momentum of the baryons: if it is large enough to keep the gas in Keplerian rotation
well beyond the innermost stable orbit, then a disk can form [48]. Following [2], the condition
for disk formation can be written as
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. (4.3)

We make the assumption that a disk always forms.2 We relax this assumption in §6.4 to
derive a conservative bound.

The complex processes that shape the transport of energy and angular momentum in the
disk and the associated non-thermal emission represent an important source of uncertainty
when assessing the CMB bound. In accretion disks, the angular momentum of the rotating
matter is gradually transported outwards by stresses (related to turbulence, viscosity, shear,
and magnetic fields), and matter flows inwards. Energy is typically transferred to the elec-
trons, which are responsible for the non-thermal cooling via synchrotron, bremsstrahlung,
and inverse Compton, and is ultimately radiated away. The accretion scenario that we are
considering is characterized by low values of the accretion rate, well below the Eddington
value. In this situation, the accretion flow is typically not dense enough to guarantee e�cient
coupling between ions and electrons, as is instead the case for thin disks [49]. Hence, the
dissipated energy is not e�ciently radiated away by the leptonic component and is advected
into the central black hole. The accretion disk that corresponds to this scenario is hot and
geometrically thick, and is usually called Advention-Dominated Accretion Flow (ADAF). The
✏ parameter in the ADAF model is linearly suppressed for smaller accretion rates.

The physics behind the suppression of the radiative e�ciency is typically captured by a
parameter called �, which quantifies the fraction of turbulent energy that heats the electrons
directly. Magneto-hydro-dynamic (MHD) turbulence is the main physical process ultimately
responsible for the transfer of energy and angular momentum in the accretion flow: turbulent
energy is dissipated at small scales via kinetic damping mechanisms that generally transfer

2We have verified a posteriori that this is mostly the case for the range of PBH masses considered in this
work for allowed values of fPBH (including those ruled out by non-CMB bounds as shown in Figure 6) and in
the redshift range that has the most constraining power, i.e., typically z ⇠ O(100 � 1000).
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� Ṁnet /ṀEdd Range ✏0 a

< 2.9 ⇥ 10�5 1.58 0.65
0.5 2.9 ⇥ 10�5

� 3.3 ⇥ 10�3 0.055 0.076
3.3 ⇥ 10�3

� 5.3 ⇥ 10�3 0.17 1.12
< 9.4 ⇥ 10�5 0.12 0.59

0.1 [benchmark] 9.4 ⇥ 10�5
� 5.0 ⇥ 10�3 0.026 0.27

5.0 ⇥ 10�3
� 6.6 ⇥ 10�3 0.50 4.53

< 7.6 ⇥ 10�5 0.065 0.71
10�3 7.6 ⇥ 10�5

� 4.5 ⇥ 10�3 0.020 0.47
4.5 ⇥ 10�3

� 7.1 ⇥ 10�3 0.26 3.67

Table 1: The piecewise power-law fitting formulae giving the radiative e�ciency parameters needed
to compute Eq. (4.4), taken from [22].

energy to the ions and electrons at di↵erent rates, with a preference to the heavy component.
Hence, this parameter was initially believed to be very small, O(10�3) in early works on
ADAF modeling. However, further investigation has demonstrated that the electrons can
indeed receive a comparable fraction of turbulent heating to that of the ions due to a variety
of mechanisms including magnetic reconnection [50–52]. In this work we do not aim at
modeling the complex physics that shapes these processes. Instead, we follow the approach
of [22]: we bracket the associated uncertainties by treating � as a free parameter. For di↵erent
reference values of �, the authors solve a set of equations that describe a two-fluid ADAF and
compute both its dynamical structure (temperature and density profile) and the non-thermal
emission.

The main output of these calculations is to define the behavior of the radiative e�ciency
✏ as a function of the accretion rate Ṁ , which has the functional form

✏(Ṁ) = ✏0

 
Ṁ

0.01Ṁedd

!
a

, (4.4)

where Ṁedd is the Eddington accretion rate. The parameters ✏0 and a characterizing the
model take a piecewise functional form explicitly dependent on the accretion rate, and are
defined in table I of [22]. For typical values of the accretion rate in the PR model, using
the benchmark of � = 0.1, we have ✏0 = 0.12 and a = 0.59; this possibility, as well as
the other values that we consider in this paper are detailed in Table 1. The function in
Eq. (4.4) captures all the information that is needed for the problem of energy injection into
the inter-galactic medium (IGM) that is of interest for our current work. We remark that our
benchmark choice implies a larger radiative e�ciency compared to the (very conservative)
scenario of spherical accretion (as investigated by [13]). On the other hand, it features a lower
e�ciency compared to the thin-disk case, which predicts a constant value of ✏ ' 0.1 [49].

4.2 Energy deposition

It has been shown that energy injections during the dark ages are not necessarily deposited
into the medium on the spot,3 and rather can be deposited at later times. The energy
deposition functions, fc (z, Xe), quantify the amount of injected energy that is deposited at

3On-the-spot refers to energy being absorbed by the medium at the same redshift as it was emitted.
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Xie, Yuan 1207.3113

Radiative efficiency of hot accretion flows 1583

Figure 1. The radiative efficiency of hot accretion flows defined in equation (7) as a function of the net accretion rate. The open symbols represent the results of
ADAF or Type I LHAF, while the filled symbols are for the two-phase accretion model. The solid (with data shown as diamonds), dot-dashed (with triangles),
dashed (with squares) and long-dashed (with circles) lines represent δ = 10−3, δ = 10−2, δ = 0.1 and δ = 0.5, respectively. The two-phase model for δ = 10−3

is similar to δ = 10−2, so it is not shown. The dotted curve is the radiative efficiency of standard thin disc model (ϵSSD ≡ 0.1). The filled hexagons mark the
value of Ṁcr,ADAF for each choice of δ. The results of the power-law fit are presented in equation (11) and Table 1.

4 N U M E R I C A L R E S U LTS

4.1 Radiative efficiency

We set the black hole mass MBH to 10 M⊙. We find that the results
are similar for supermassive black holes. The outer boundary is
fixed to be Rout = 102Rs. So, we have Ṁnet = (Rin/Rout)sṀ0 =
0.16Ṁ0. Here, Ṁ0 ≡ Ṁ(Rout). We adopt various values of δ, δ =
10−3, 10−2, 0.1 and 0.5. Throughout this paper, we set α = 0.1.
Numerical simulations show that if the α viscosity is intrinsically
the magnetic stress associated with the MHD turbulence driven by
magnetorotational instability, as is widely accepted, we usually have
αβ = constant, with the constant being of order unity (Blackman,
Penna & Varniére 2008). Therefore, we set β = 10.

The results of efficiency are shown in Fig. 1. For given out-
flow strength (s = 0.4), the critical net accretion rates (Ṁcr,ADAF,
Ṁcr,LHAF) are similar for various values of δ: (6.3, 7.1)×10−3ṀEdd

(δ = 10−3), (6.2, 7.1)×10−3ṀEdd (δ = 10−2), (5.9, 6.6)×10−3ṀEdd

(δ = 0.1) and (4.4, 5.3) × 10−3ṀEdd (δ = 0.5). Several results can
be seen from Fig. 1, as follows.

(i) The radiative efficiency for ADAFs is positively corre-
lated with the mass accretion rate, as expected. When Ṁnet !
2 × 10−5ṀEdd, the slopes for various values of δ are similar, and
the efficiency can be described by ϵ ∝ Ṁ0.7. This is flatter than

previous estimations of ϵ ∝ Ṁ by Narayan et al. (1998), where
δ = 10−3. This discrepancy is not because of δ or the outflow ef-
fect, but it seems to be simply because the estimation in previous
work is rough. From fig. 7 in Narayan et al. (1998), as the accretion
rate changes by three orders of magnitude (i.e. from 10−4ṀEdd to
10−1ṀEdd), the bolometric luminosity varies by five orders of mag-
nitude (i.e. from 10−7LEdd to 10−2LEdd). So we should also have
ϵ ∝ Ṁ0.6−0.7, which is fully consistent with our result.

(ii) In the ADAF regime, the radiative efficiency strongly de-
pends on the value of δ. This is because a larger value of δ implies
that more energy will be received by the electrons, and subsequently
there is higher radiative efficiency. However, note that when Ṁ is
small, the efficiency is still very low. In the case of the accretion flow
in Sgr A*, if we adopt the definition of equation (8), the radiative
efficiency will be ∼4 × 10−5, which is lower than that of a stan-
dard thin disc by a factor of 4 × 10−4 (Yuan et al. 2003). Because
Rout = RBondi ≈ 105Rs and s ≈ 0.3 are adopted by Yuan et al. (2003),
the mass loss in the outflow contributes (1/105)0.3 ≈ 0.04. Another
factor (4 × 10−4/0.04 ≈ 10−2) is because of energy advection by
both ions and electrons (see Section 4.2).

(iii) When Ṁnet ∼ Ṁcr,ADAF, for different values of δ, the slopes
are all very steep and the values of ϵ become comparable. This is
because in this regime of Ṁ , qvis,e is compensated by qie (∼qvis,e) in
the electron energy equation. Moreover, the main radiative process
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Uncertainty: radiation efficiency

4.1 Energy injection from accreting matter

The total energy injection into the medium per unit volume is given by

d2
E

dV dt

����
inj

= LnPBH = LfPBH

⇢DM

M
, (4.1)

where L is the bolometric accretion luminosity of a PBH of mass M , which is a function
of the accretion rate Ṁ . Accretion is a very powerful energy converter. The bolometric
luminosity is related to the total influx of rest-mass energy of the accreted material via the
✏ parameter that measures the radiative e�ciency:

L = ✏Ṁc
2

. (4.2)

Here, ✏ is, in general, a function of Ṁ , and typically takes the functional form of a power law
✏(Ṁ) / Ṁ

a, where a and the normalization can vary significantly depending on whether or
not an accretion disk is formed, and on the type of accretion disk.

The basic criterion used to assess whether an accretion disk can form is to estimate the
angular momentum of the baryons: if it is large enough to keep the gas in Keplerian rotation
well beyond the innermost stable orbit, then a disk can form [48]. Following [2], the condition
for disk formation can be written as
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We make the assumption that a disk always forms.2 We relax this assumption in §6.4 to
derive a conservative bound.

The complex processes that shape the transport of energy and angular momentum in the
disk and the associated non-thermal emission represent an important source of uncertainty
when assessing the CMB bound. In accretion disks, the angular momentum of the rotating
matter is gradually transported outwards by stresses (related to turbulence, viscosity, shear,
and magnetic fields), and matter flows inwards. Energy is typically transferred to the elec-
trons, which are responsible for the non-thermal cooling via synchrotron, bremsstrahlung,
and inverse Compton, and is ultimately radiated away. The accretion scenario that we are
considering is characterized by low values of the accretion rate, well below the Eddington
value. In this situation, the accretion flow is typically not dense enough to guarantee e�cient
coupling between ions and electrons, as is instead the case for thin disks [49]. Hence, the
dissipated energy is not e�ciently radiated away by the leptonic component and is advected
into the central black hole. The accretion disk that corresponds to this scenario is hot and
geometrically thick, and is usually called Advention-Dominated Accretion Flow (ADAF). The
✏ parameter in the ADAF model is linearly suppressed for smaller accretion rates.

The physics behind the suppression of the radiative e�ciency is typically captured by a
parameter called �, which quantifies the fraction of turbulent energy that heats the electrons
directly. Magneto-hydro-dynamic (MHD) turbulence is the main physical process ultimately
responsible for the transfer of energy and angular momentum in the accretion flow: turbulent
energy is dissipated at small scales via kinetic damping mechanisms that generally transfer

2We have verified a posteriori that this is mostly the case for the range of PBH masses considered in this
work for allowed values of fPBH (including those ruled out by non-CMB bounds as shown in Figure 6) and in
the redshift range that has the most constraining power, i.e., typically z ⇠ O(100 � 1000).
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� 4.5 ⇥ 10�3 0.020 0.47
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� 7.1 ⇥ 10�3 0.26 3.67

Table 1: The piecewise power-law fitting formulae giving the radiative e�ciency parameters needed
to compute Eq. (4.4), taken from [22].

energy to the ions and electrons at di↵erent rates, with a preference to the heavy component.
Hence, this parameter was initially believed to be very small, O(10�3) in early works on
ADAF modeling. However, further investigation has demonstrated that the electrons can
indeed receive a comparable fraction of turbulent heating to that of the ions due to a variety
of mechanisms including magnetic reconnection [50–52]. In this work we do not aim at
modeling the complex physics that shapes these processes. Instead, we follow the approach
of [22]: we bracket the associated uncertainties by treating � as a free parameter. For di↵erent
reference values of �, the authors solve a set of equations that describe a two-fluid ADAF and
compute both its dynamical structure (temperature and density profile) and the non-thermal
emission.

The main output of these calculations is to define the behavior of the radiative e�ciency
✏ as a function of the accretion rate Ṁ , which has the functional form

✏(Ṁ) = ✏0

 
Ṁ

0.01Ṁedd
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a

, (4.4)

where Ṁedd is the Eddington accretion rate. The parameters ✏0 and a characterizing the
model take a piecewise functional form explicitly dependent on the accretion rate, and are
defined in table I of [22]. For typical values of the accretion rate in the PR model, using
the benchmark of � = 0.1, we have ✏0 = 0.12 and a = 0.59; this possibility, as well as
the other values that we consider in this paper are detailed in Table 1. The function in
Eq. (4.4) captures all the information that is needed for the problem of energy injection into
the inter-galactic medium (IGM) that is of interest for our current work. We remark that our
benchmark choice implies a larger radiative e�ciency compared to the (very conservative)
scenario of spherical accretion (as investigated by [13]). On the other hand, it features a lower
e�ciency compared to the thin-disk case, which predicts a constant value of ✏ ' 0.1 [49].

4.2 Energy deposition

It has been shown that energy injections during the dark ages are not necessarily deposited
into the medium on the spot,3 and rather can be deposited at later times. The energy
deposition functions, fc (z, Xe), quantify the amount of injected energy that is deposited at

3On-the-spot refers to energy being absorbed by the medium at the same redshift as it was emitted.
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Figure 7: Marginalized posterior distributions of fPBH (in arbitrary units) showing the e↵ect of each
ingredient in the accretion recipe entering in the CMB bound for a benchmark PBH mass of 103

M�.
The 95% probability region is shaded for each posterior, and the bound is labelled for the two extrema
for each panel. In particular, the top panel shows the e↵ect of the ionized sound speed in the PR
model. The middle panel shows the e↵ect of varying � in an ADAF accretion scenario for the BHL
(left) and the PR (right) models (see Table 1, and Eq. (4.4) for details on �). The bottom panel
shows the e↵ect of di↵erent energy deposition function treatments for BHL (left) and PR (right).
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Figure 7: Marginalized posterior distributions of fPBH (in arbitrary units) showing the e↵ect of each
ingredient in the accretion recipe entering in the CMB bound for a benchmark PBH mass of 103

M�.
The 95% probability region is shaded for each posterior, and the bound is labelled for the two extrema
for each panel. In particular, the top panel shows the e↵ect of the ionized sound speed in the PR
model. The middle panel shows the e↵ect of varying � in an ADAF accretion scenario for the BHL
(left) and the PR (right) models (see Table 1, and Eq. (4.4) for details on �). The bottom panel
shows the e↵ect of di↵erent energy deposition function treatments for BHL (left) and PR (right).
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Figure 7: Marginalized posterior distributions of fPBH (in arbitrary units) showing the e↵ect of each
ingredient in the accretion recipe entering in the CMB bound for a benchmark PBH mass of 103

M�.
The 95% probability region is shaded for each posterior, and the bound is labelled for the two extrema
for each panel. In particular, the top panel shows the e↵ect of the ionized sound speed in the PR
model. The middle panel shows the e↵ect of varying � in an ADAF accretion scenario for the BHL
(left) and the PR (right) models (see Table 1, and Eq. (4.4) for details on �). The bottom panel
shows the e↵ect of di↵erent energy deposition function treatments for BHL (left) and PR (right).
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of most of the VLA antennas (24), and then averaged to produce a
consistent set of ‘‘best’’ values.2

2.2. 5 GHz

As we assembled our catalog, we also conducted 5 GHz ob-
servations to assess whether various sources were viable pulsar
candidates and, if so, whether they might be bright enough to be
observable at higher frequencies for a periodicity search.

We have assembled a list of 23 candidate GC radio pulsars.
These were selected on the basis of their angular diameters and
radio spectra. The majority have angular diameters less than 500

at 1.4 GHz. Although the nominal angular diameter of a com-
pact GC source is 0B8 at 1.4 GHz, more distant sources will have
larger diameters. A diameter of 500 corresponds to a source about
0.5–1 kpc more distant than Sgr A!, assuming that the scattering
material covers the GC uniformly (without ‘‘gaps’’ or ‘‘holes’’
through it). We also included a small number of sources whose
angular sizes are larger than our nominal threshold, but which
have steep spectra and suggestive morphologies, e.g., shell-like
or cometary.

3. SOURCE CATALOG

Table 2 presents the 1.4 GHz source catalog, and Figure 2
shows the location of the sources detected. Table 3 tabulates the
sources observed in our 5 GHz observations. The format of
Table 3 is similar to that of Table 2 except that we tabulate a
spectral index between 1.4 and 5 GHz (S! / !") and do not tab-
ulate the offset from the phase center. The latter quantity is un-
important as the sources were placed at or near the phase center.

Because our fields overlap, we can use sources identified in
multiple fields to assess the internal consistency of the flux den-
sities and angular diameters in the survey. A total of 69 sources
were observed inmultiple fields. Figures 3 and 4 compare the flux
densities and angular diameters, respectively, determined for these
sources.

Both the flux densities and the angular diameters are consis-
tent with these quantities being reasonably well determined re-
gardless of distance from the phase center of a field. We have
examined all of the outliers in both plots, where we have defined
an ‘‘outlier’’ as a source for which the flux density or angular

diameter varies by more than a factor of 2 from one field to
another. The outliers result from sources at large distances from
the phase center of one field (k300), extended sources, or a com-
bination of both. As we remarked above, our observations were
optimized for searching for compact sources. Extended sources
are unlikely to be imaged well given our u-v coverage.
Specifically for the angular diameter, Figure 4 shows the mul-

tiply observed sources with measured angular diameters less than
2000. There are a small number of sourceswhose angular diameters
are measured to be larger than this value. However, given our
limited u-v coverage, we do not believe that the spatial dynamic
range is better than about a factor of 10, or that the largest angular
size measurable is more than about a factor of 10 larger than our
angular resolution. If we further exclude outliers, the correlation
becomes quite strong (correlation coefficient ¼ 0:92).
For the sources whose flux densities or angular diameters are

in good agreement, close examination of Figures 3 and 4 shows
a slight bias, in the sense that when a source is farther from the

TABLE 2—Continued

Name

(2LC)

(1)

R.A.

(J2000.0)

(2)

Decl.

(J2000.0)

(3)

I

(mJy beam#1)

(4)

S

(mJy)

(5)

#
(arcsec)

(6)

Offset

(arcmin)

(7)

359.781+0.523 ........... 17 43 03.38 #28 50 56.6 5.5 25.4 6.1 12.7

359.830#0.523 .......... 17 47 15.62 #29 21 13.1 1.9 1.0 1.5 5.9

359.872+0.178 ........... 17 44 37.06 #28 57 09.4 68.0 176.2 1.8 14.1

359.874+0.164 ........... 17 44 40.63 #28 57 28.1 6.5 597.6 26.0 20.5

359.930#0.875 .......... 17 48 52.95 #29 26 57.6 6.3 22.5 2.5 22.6

359.955#0.550 .......... 17 47 39.81 #29 15 36.3 3.9 27.1 7.3 3.4

359.970#0.456 .......... 17 47 19.85 #29 11 54.4 3.5 9.6 4.0 3.8

359.982#0.076 .......... 17 45 52.25 #28 59 28.0 15.2 160.2 6.6 2.9

359.985+0.027 ........... 17 45 28.66 #28 56 04.7 22.7 437.6 11.0 22.9

359.986+0.027 ........... 17 45 28.70 #28 56 02.5 24.5 207.5 6.0 25.7

359.988#0.394 .......... 17 47 07.82 #29 09 06.0 1.4 1.0 1.7 7.3

Notes.—Units of right ascension are hours, minutes, and seconds, and units of declination are degrees, arcminutes, and arcseconds.
Col. (4): I is the peak intensity of source in mJy beam#1. Col. (5): S is the flux density of source in mJy. Col. (6): # is the angular
diameter of source in arcseconds. Col. (7): Offset is the angular offset of source from phase center of field in arcminutes.

Fig. 2.—Locations of the sources detected at 1.4 GHz. The size of the symbol
is proportional to the angular diameter of the source. The gray scale is from the
0.33 GHz image by LaRosa et al. (2000).

2 The AIPS task PBCOR has additional explanation and a listing of the
coefficients used.
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Figure 3. Trial maps of the GC region in the 3–10 (top) and 10–40 keV (bottom) bands using source cells of 20% PSF enclosures,
overplotted with the Chandra counterparts of the NuSTAR detections (green: group 1 and yellow: group 2, §3.4). The colors are scaled
with the logarithmic values (X) of trial numbers (10X), and the maximum is set at X=32 to make faint sources stand out more clearly.
A few large blobs of high significance include the Sgr A di↵use complex, GRS 1741.9–2853 (§5.2), 1E 1743.1–2843 (§5.1) and the Arches
cluster (§9.2). The large streaks in the 3–10 keV band are (GR) backgrounds from bright sources near the region.

Source search routines such as wavdetect (Freeman et
al. 2002) and wvdecomp27 have been very successful in
finding point sources from X-ray images taken by Chan-
dra, XMM-Newton and other X-ray telescopes. These
techniques rely on the correlation between the wavelet
kernels and the local count distribution of X-ray images.
As researchers lower the detection thresholds of these
techniques in hopes of finding fainter sources, it becomes
essential to independently validate faint sources detected
near the thresholds (e.g. M09; Hong 2012). An indepen-
dent validation also alleviates a somewhat unavoidable
subjectivity inherent in threshold setting (Townsley et
al. 2011). In short, negative values used in wavelet anal-
yses, although enabling e�cient source detection, intro-
duce in essence a “subtraction” procedure, which can be
inadequate in characterizing the detection significance of
X-ray sources from non-negative counts following Pois-

27 By A. Vikhlinin; http://hea-www.harvard.edu/RD/zhtools/.

son statistics.
The relative size of the NuSTAR FoV to the point

spread function (PSF) is much smaller than those of
Chandra or XMM-Newton. The ratio of the FoV (⇠130)
to the Half-Power Diameter (HPD, 5800) and FWHM
(1800) of the PSF in NuSTAR is only about 13 and 40,
respectively, whereas in Chandra the ratio exceeds 1000
(FoV⇠17.50 and HPD <100 at the aimpoint) for near on-
axis sources. Each NuSTAR observation often misses a
large portion of the PSF of many sources. A point source
in the mosaicked data often comprises a number of neigh-
boring observations with partial PSF coverage, varying
exposures and di↵erent vignetting e↵ects. This, com-
bined with relatively large NuSTAR backgrounds with
complex patterns, further limits the utility of the conven-
tional techniques for source search in the mosaicked NuS-
TAR data. Except for several self-evident bright sources,
all other sources detected by the conventional techniques

1.4 GHz, VLA, Lazio 
& Cordes 2008

10-40 keV,  
NuStar catalog, 
Hong et al. 2016

Good data from GC region 
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Accretion Bounds in Astronomical Context

• Monte-Carlo 
simulations of the 
emission from BHs in the 
inner Galaxy

• Simulated maps of the 
expected radio and X-ray 
sources near the GC 
region associated to the 
PBH population  

• Conservative upper 
limits on the DM fraction 
in PBHs DG, Bertone, Calore, 

Connors, Lovell, Markoff, 
Storm, 1612.00457

Manshanden, DG, 
Connors, Bertone, 
Ricotti, 1812.07967
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Accretion Bounds in Astronomical Context

DG, Bertone, Calore, 
Connors, Lovell, Markoff, 
Storm, 1612.00457

Manshanden, DG, 
Connors, Bertone, 
Ricotti, 1812.07967

A science case for SKA!

Weltman et al., “Fundamental 
Physics with the Square 
Kilometre Array” 1810.02680


