Manifesting hidden dynamics of a sub-component dark matter

A. Kamada, H. Kim, JC. Park, SS , JCAP 10, 052 (2022)	Seodong Shin	한 전북대학교 JEONBUK NATIONAL UNIVERSIT
Introduction	Refe	rence model
n multi-component dark matter (DM) scenarios, less attention been given to sub-dominant components of DM and the corresponding impact on their detectability. They are often t to be hidden from observations in direct and indirect detection DM due to its small fraction. However, a sub-dominant DM component can play a domina in the dynamics of and detection of dark sector. The strategy probe a sub-dominant DM component relies on its cosmolog evolution which is sensitive to the interaction within a dark s Here, we show a case when the dynamics within a dark sector affect the detectability of a sub-component DM.	Image: Solution of the sector.For concreteness, we take scenario:Solution of the sector.1. Minimally two DM componentsImage: Solution of the sector.1. The light boosted DM graph with large kinetic energy	a multi-component boosted DM ponents: χ_0 (heavy) and χ_1 (light) ent is the heavy DM χ_0 which does not s with the SM particles. Its relic ed by the freeze-out of $\chi_0\chi_0 \leftrightarrow \chi_1\chi_1$ freeze-out mechanism. M freezes out later lowering the ared to χ_0 . χ_1 can be produced via $\chi_0\chi_0 \rightarrow \chi_1\chi_1$ gy about m_{χ_0} .
	Results	
After the freeze-out of χ_0 , the Boltzmann equation is $\frac{dY_{\chi_1}}{dx} \simeq -\frac{\lambda_{\chi_1}(x)}{x} \left[Y_{\chi_1}^2 - (Y_{\chi_1}^{eq}(x))^2 - Y_{ast.}^2(x) \right]$ $\chi_0 \chi_0 \to \chi_1 \chi_1$ $\chi_0 \chi_0 \to \chi_1 \chi_1$ $\chi_{\chi_i} = s \langle \sigma_i v_{rel} \rangle / H$ $\langle \sigma_0 v_{rel} \rangle = \langle \sigma v \rangle_{\chi_0 \chi_0 \to \chi_1 \chi_1}$ $\langle \sigma_1 v_{rel} \rangle = \langle \sigma v \rangle_{\chi_1 \chi_1 \to SM}$ $Y_{ast.}(x) = \sqrt{\frac{\langle \sigma_0 v_{rel} \rangle}{\langle \sigma_1 v_{rel} \rangle}} Y_{\chi_0}(x)$	 If the ratio r₁ ≡ Ω_{χ1}/Ω_{DM, tot} = equilibrium with SM longer x_{f.o.,χ1} > 20 and hence Y^{eq}_{χ1} Then the production rate of negligible compared to the or Y_{χ1} compared to the standa So, for a fixed r₁ ≪ 1, the defective: ⟨σ₁v_{rel}⟩ is proportion p-wave dominant annihilation Then, the cosmo/astro observation observation observation of the standa 	« 1, the light DM χ_1 is in thermal than the conventional WIMP case, i.e, « $Y_{ast.}$ at the freeze-out of χ_1 . χ_1 from $\chi_0\chi_0 \rightarrow \chi_1\chi_1$ is non- depletion by $\chi_1\chi_1 \rightarrow$ SM, increasing rd WIMP freeze-out case. pletion $\chi_1\chi_1 \rightarrow$ SM should be onal to $1/r_{1^2}$, $1/r_{1^3}$ for the <i>s</i> -wave and on process, respectively. rvables of χ_1 proportional to $n_{\chi_1}^2 \langle \sigma_1 v r_{1^2} \rangle$
• Long after the freeze-out of $\chi_1\chi_1 \leftrightarrow$ SM, the energetically produced χ_1 from $\chi_0\chi_0 \rightarrow \chi_1\chi_1$ can transfer its energy to relic χ_1 via self-interactions, increasing its kinetic energy. Called the <i>self-heating mechanism</i> , which is important for <i>p</i> -wave dominant $\chi_1\chi_1 \rightarrow$ SM annihilation case.	Y the The bounds from the observery or γ-rays in our galaxy, DM d those constraining the warm very strongly to the sub-com $((\frac{10^{-1}}{U} + \frac{10^{-2}}{U})^{-1} + \frac{10^{-2}}{U} + 1$	Pations of BBN, CMB, diffuse X-rays irect detection experiments, and dark matter (for $r_1 \ge 7\%$) apply ponent DM χ_1 .

Discussion

- In multi-component DM scenarios, a sub-component DM (χ_1) can severely affect the cosmo/astro observables unlike conventional expectation; due to the strong current bounds the *p*-wave dominant $\chi_1\chi_1 \rightarrow$ SM annihilation case is preferred.
- Self-heating from $\chi_0\chi_0 \rightarrow \chi_1\chi_1$ followed by the self-interactions among χ_1 arises and changes the evolution of T_{χ_1} even after its freeze-out. Then, the constraints for warm dark matter can be applied to the *p*-wave dominant $\chi_1\chi_1 \rightarrow SM$ process for $r_1 \ge 7\%$.
- Direct detection constraints may change and complementary searches in accelerators can interplay with cosmo/astro observations to probe the detailed structure of dark sector.

 10^{1}

 m_{χ_1} [MeV]

 $m_{\chi_0} = 30 \, \text{MeV}$

10

 10^{-5}

 10^{-6}

 10^{0}

- $\langle \sigma_1 v_{rel} \rangle$: *p*-wave dominant
- Reference model: singlet scalar χ_1 interacting with SM with a dark photon (A')

 10^{1}

 m_{χ_1} [MeV]

 $m_{\chi_0} = 30 \,\mathrm{MeV}$

 $\sigma/m = 0.1 \, {\rm cm}^2/$

 10^{2}

- Green: N_{eff}, Pink: Warm DM
- A future discovery of χ_1 (blue star) can be inconsistent with the cosmo/astro bounds.

References

 10^{-5}

 10^{-6}

 10^{0}

- 1. K. Agashe, Y. Cui, L. Necib, J. Thaler, JCAP 2014.
- 2. D. Kim, J.-C. Park, SS, PRL 2017
- 3. G. Giudice, D. Kim, J.-C. Park, SS, PLB 2018
- 4. G. Belanger, J.-C. Park, JCAP 2012