The JWST lensed quasar dark matter survey

Daniel Gilman

Brinson Prize Fellow University of Chicago

credit: Diemer & Mansfield

Halos contain subhalos which themselves contain sub-subhalos

PROPERTY OF HALOS #2

PROPERTY OF HALOS #1

PROPERTY OF HALOS #2

PROPERTY OF HALOS #1

RULED OUT?

PROPERTY OF HALOS #2

PROPERTY OF HALOS #1

RULED OUT?

Strong lensing

Gravitational lensing: deflection of light by gravitational fields

Strong lensing produces multiple images of a single source

Strong lensing produces multiple images of a single source

Observed source

Observed source

True source

Main deflector

(Lensed) quasar host galaxy

Multiple images of background quasar

Figure adapted from Shajib et al. (2019)

-> sensitive to small-scale structure

Image magnifications ~ $\partial^2 \Psi(r) / \partial r^2 \propto$ projected mass

THE (recent) PAST: narrow-line flux ratios from HST

THE PRESENT: mid-IR flux ratios from JWST GO-2046

JWST GO-2046 "A definitive test of the dark matter paradigm"

PI Anna Nierenberg, Co-Is include D. Gilman

Survey introduction:

- Nierenberg, incl. Gilman et al. (2023) (arXiv: 2309.10101)

First results with 9 systems:

- Keeley, incl. Gilman et al. (2024) (arXiv: 2405.01620)

A CRASH COURSE IN FORWARD MODELING STRONG LENSES (in the context of warm dark matter)

In theory there is no difference between theory and practice. In practice there is.

(Yogi Berra)

Simulation pipeline

Dark matter Halo mass function, theory halo density profiles

Compare with data

Simulation pipeline

Dark matter physics/halo properties

- Both subhalos and line-of-sight halos
- (Sub)halo mass function amplitude & slope
- halo density profiles, concentrations
- Exotic DM physics

All code is open-source: - pyHalo (generate substructure realizations) - lenstronomy (lensing calculations) - samana (simulation pipeline)

Simulation pipeline example: 1) generate realizations of halos from model CDM **WDM**

- plethora of subhalos & field halos
- halo concentration increases at lower masses

- No structure below a cutoff scale

-halo concentrations suppressed below cutoff

Simulation pipeline example: 1) generate realizations of halos from model CDM **WDM**

- plethora of subhalos & field halos
- halo concentration increases at lower masses

- No structure below a cutoff scale -halo concentrations suppressed below cutoff

Simulation pipeline example: 2) forward model lenses with halos

CDM

 $\sim 10^6$ simulations per lens for accurate statistics

WDM

Simulation pipeline example: 3) compute flux ratios

FLUX RATIO (IMAGE 1 / IMAGE 2)

Simulation pipeline example: 4) derive likelihoods

FLUX RATIO (IMAGE 1 / IMAGE 2)

First application to WDM Gilman, et al. (2020)

Used narrow-line flux ratios from Nierenberg et al. (2014, 2017, 2020)

 $m_{\rm thermal} > 5.2 {\rm keV}$

First constraints from JWST lensed quasar **DM survey**

see Keeley, Nierenberg, Gilman, et al. (2024) arXiv: 2405.01620

Improve on previous constraints by Gilman et al. (2020)

- 10:1 posterior odds at $10^{7.6} M_{\odot}$

~ 6 keV thermal relics ruled out

log₁₀ M_{hm}/M₀

We can test any theory that alters the internal and/or abundance of halos

Warm dark matter: halos less abundant and less concentrated Gilman et al. (2019, 2020) (arXiv: 1901.11031, 1908.06983) Keeley, Nierenberg, Gilman et al. (2024) (arXiv:)

Fuzzy dark matter: halos less abundant, quantum wave interference effects in halo density profiles Laroche, Gilman et al. (2022) (arXiv: 2206.11269)

Self-interacting dark matter: core formation and collapse change the lensing efficiency of halos Gilman et al. (2021, 2022) (arXiv: 2105.05259, 2207.1311)

> **Inflation/early Universe**: enhanced/suppressed small-scale power impacts halo abundance/concentration Gilman et al. (2022) (arXiv: 2112.03293)

Massive free-floating primordial black holes: the most efficient lenses Dike, Gilman et al. (2022) (arXiv: 2210.09493)

Mixed warm/cold dark matter: aka lukewarm dark matter Keeley, Nierenberg, Gilman et al. (2023) (arXiv: 2301.07265)

extremely dense

Self-interacting dark matter (SIDM)

-> dark matter not collisionless; exchanges energy, momentum with itself

Self-interacting dark matter (SIDM) -> preserves large-scale structure

fSIDM $\sigma_{\tilde{t}}/m_{\chi} = 1.0 \text{ cm}^2 \text{g}^{-1}$

figure from Fischer et al. (2022)

Self-interacting dark matter (SIDM) -> collisionless (CDM-like) at high speeds ($v \sim 1,000 \text{ km s}^{-1}$) in cluster-mass halos

figure from Fischer et al. (2022)

Self-interacting dark matter (SIDM) -> "large" cross sections ($\sigma > 10 \text{ cm}^2 \text{ g}^{-1}$) at low speeds ($v \sim 30 \text{ km s}^{-1}$) inside low-mass halos

figure from Fischer et al. (2022)

Velocity dependence necessary to evade constraints from galaxy clusters

Strongly-enhanced cross section at low speeds (in low-mass halos)

 $\overline{r_s}$

Core-collapsed halos are extremely efficient lenses

Core-collapsed halos are extremely efficient lenses

Now we are looking down the line of sight

-0.05

Dark matter density relative to average

Critical curve (high magnifications)

0.05 0.00

CDM

SIDM with cores only

SIDM cores+core collapse

Self-interacting dark matter (SIDM)

Core formation+collapse match diversity of observed rotation curves?

Minor et al. (2021)

0.6

0.4

0.2

0

-0.2

-0.4

-0.6

-0.8

Minor et al. (2021)

IF we accept then the SIDM interpretation of these observations

THEN we should expect to find many collapsed halos at lower masses

We can explore SIDM's rich phenomenology

-> example: attractive dark force exchanged via light mediator

-> solving Schrodinger Eqn. reveals resonances at particular speeds/halo mass scales

$$V(r) = -\alpha_{\chi} \frac{\exp\left(-r \ m_{\phi}\right)}{r}$$

 α_{ν} = potential strength $m_{\phi} = \text{mediator mass} \sim 1 \text{ MeV}$ $m_{\gamma} = DM \text{ mass} \sim 1 - 10 \text{ GeV}$

10² section [cm² 10¹ 10⁰ cross

Proof of concept with Hubble Space Telescope data and 11 lenses

Gilman, Zhong, Bovy; PRD 2023 arXiv: 2207.13111

Constraining resonant dark matter self-interactions with strong gravitational lenses

(Dated: May 10, 2023)

Daniel Gilman¹, Yi-Ming Zhong², and Jo Bovy¹ ¹Department of Astronomy and Astrophysics, University of Toronto, Toronto, ON, M5S 3H4, Canada ²Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637, USA

We devise a method to constrain self-interacting dark matter (SIDM) from observations of quadruply-imaged quasars, and apply it to five self-interaction potentials with a long-range dark force. We consider several SIDM models with an attractive potential that allows for the formation of quasi-bound states, giving rise to resonant features in the cross section localized at particular velocities below 50 km s⁻¹. We propose these resonances, which amplify or suppress the cross section amplitude by over an order of magnitude, accelerate or delay the onset of core collapse in low-mass dark matter halos, and derive constraints on the timescale for core collapse for the five interaction potentials we consider. Our data strongly disfavors scenarios in which a majority of halos core collapse, with the strongest constraints obtained for cross section strengths exceeding 100 $\rm cm^2g^{-1}$ at relative velocities below 30 km s⁻¹. This work opens a new avenue to explore the vast landscape of possible SIDM theories.

2

INTRODUCTION

Self-interacting dark matter (SIDM) has gained trac-

background source. We focus on a particular kind of lens system in which a quasar becomes quadruply imaged by a foreground galaxy, as depicted in Figure 1. The

characteristic collapse timescale $t_0^{-1} \sim \langle \sigma v^5 \rangle / \langle v^5 \rangle \times \text{density} \times \text{velocity}$

> Yang & Yu (2022) arXiv: <u>2305.16176</u>, Yang, Du et al. (2023) arXiv: 2205.02957

Halos collapse after some multiple of the timescale

$t_0^{-1} \sim \langle \sigma v^5 \rangle / \langle v^5 \rangle \times \text{density} \times \text{velocity}$ evolution timescale t_0 [Gyr] halo mass $[M_{\odot}]$ 10^{6} 10^{7} 10^{8} 10^{9} 10^{10} 10^{11} 10^{12} 10⁵ — Model 1 10³ — Model 2 Model 3 σ_V m_X⁻¹ [cm² g⁻¹] 101 101 — Model 4 Model 5 0.1 10⁰ • 100 10² 10^{1} relative velocity [km s⁻¹]

0.01

$$\lambda_{\rm sub} = 150$$

arXiv: 2207.13111

We can compute the likelihood of data given **fraction of collapsed halos as a function of halo mass**:

$$\mathscr{L}\left(\operatorname{data}|f_{\operatorname{collapsed}}(M)\right)$$

And recast this as constraints on the core-collapse timescale

$$\lambda_{\text{field}}, \sigma) = \int \mathscr{L} \left(\mathbf{data} \left| f_{\text{collapsed}}(M) \right) \right) \\ \times p \left(f_{\text{collapsed}}(M) \left| \lambda_{\text{sub}}, \lambda_{\text{field}}, \sigma \right) df_{\text{collapsed}} \right)$$

Inference on real data with 11 lenses

Model 1

(Near) future lensing-based constraints on SIDM

Applications beyond WDM/SIDM

the (primordial) matter power spectrum (e.g. Gilman et al. 2022) arXiv: 2112.03293

Applications beyond WDM/SIDM

Ultra-light, wave, or "fuzzy" DM (e.g. Laroche, Gilman et al. 2022)

arXiv: 2206.11269

Schive et al. (2014)

Applications beyond WDM/SIDM

Ultra-light, wave, or "fuzzy" DM (e.g. Laroche, Gilman et al. 2022) arXiv: 2206.11269

Ultra-light, wave, or "fuzzy" DM (e.g. Laroche, Gilman et al. 2022)

arXiv: 2206.11269

Applications beyond WDM/SIDM

Massive free-floating black holes (Dike, Gilman, Treu; 2022)

arXiv: 2210.09493
Takeaways:

Expect new constraints on WDM/SIDM by end of 2024

JWST has observed 31 lens systems that will revolutionize our understanding of dark matter through the gravitational detection of dark halos

Upcoming surveys will find hundreds more strong lenses!

