

Experimental dark matter searches at masses below the GeV mass scale

Daniel Baxter Identification of Dark Matter (IDM 2024) 10 July 2024

Motivation

- Maria Elena and Lucia very nicely covered the more "traditional" searches at and above GeV mass
- Those searches mostly rely on elastic scattering of DM off of detector nuclei
- Below the proton mass are very well-motivated models of dark matter (see Kathryn's talk from this morning)

😤 Fermilab

Low-Mass Dark Matter Detection

Fermilab

Essig et al, Snowmass CF1 WP2 (2022) [arXiv:2203.08297]

- 1. Energy Threshold
 - At a minimum, need eV-scale thresholds to be competitive
 - R&D is pushing towards meVscale energy thresholds
- 2. Exposure
 - Not as important as for WIMP searches
 - Current best limits have kg-days
- 3. Backgrounds
 - Complicated, non-radiogenic excess backgrounds plague lower energies

Detectors Searching for Ionization

Detectors Searching for Ionization

- 1. S2-only Searches in TPCs
 - XENON
 - DarkSide50
- 2. CCD Program
 - DAMIC at SNOLAB
 - SENSEI at SNOLAB
 - DAMIC at Modane (DAMIC-M)
 - OSCURA
- 3. NTL-Amplification
 - SuperCDMS HVeV
 - EDELWEISS HV
- 4. Novel (low bandgap) Materials
 - SPLENDOR

Can sacrifice discrimination for lower threshold by not

Aalbers et al, PRL 131, 041002 (2023) [arXiv:2207.03764]

S2-only searches

8 7/10/2024 Daniel Baxter I IDM 2024

S2-only searches – XENON1T

Aprile et al, PRL 123, 251801 (2019) [arXiv:1907.11485]

Pros: <u>massive exposures</u>, <u>1-10 mdru modeled backgrounds</u>, XY position resolution, timing **Cons**: large unmodeled* dark rate \rightarrow "high" analysis threshold (100+ eV), no discrimination

*see Wed. talk from Peter Sorensen

see also Wed. talk from Shuaijie Li on PandaX

9

🚰 Fermilab

S2-only searches – DarkSide-50

‡ Fermilab

see Thurs. talk from Marie van Uffelen

The CCD Program

Interaction with silicon produces free charge carriers...

• ...which are drifted across fully-depleted region...

no loss of charge

• ...and collected in 15 micron square pixels...

exceptional position resolution

• ...to be stored until a user-defined readout time after many hours.

🚰 Fermilab

Pros: <u>low dark rates</u>, <u>few eV threshold</u>, <u>10 micron position resolution</u>, 1-10 dru backgrounds **Cons**: silicon target only, lack of timing, no discrimination below 10 keV

The CCD Program – DAMIC

The CCD Program – DAMIC

Skipper Amplifiers: allow repeated, non-destructive readout

The CCD Program – SENSEI

Tiffenberg et al, PRL 119, 131802 (2017) [arXiv:1706.00028] and Adari et al, (2023) [arXiv:2312.13342]

see Wed. talk from Ana Maria Botti

- Record silicon dark rates of 1.4 x 10⁻⁵ e⁻/pix/day
- New limits on MeV-scale DM scattering (see Ana's talk)

The CCD Program – DAMIC-M

images borrowed from Danielle Norcini's talk at IDM2024 today

Full Detector (Online in 2025!)

LBC Demonstrator (taking data since 2022)

‡ Fermilab

The CCD Program – OSCURA

images borrowed from Brenda Cervantes Vergara's talk at IDM2024 tomorrow

25,600 CCDs \rightarrow 1,600 MCMs \rightarrow 100 SMs \rightarrow 10 kg!

Skipper-CCD

p-channel sensors designed at LBNL Fabricated at new commercial foundry 1.35 MPix each - 725 μm thick

16 Skipper-CCDs Intrinsic Si substrate with 1-layer Al traces Low-background flex cable

MCM

16 MCMs Radiopure materials (Si, PTFE, EF-Cu)

SM

see Thurs. talk from Brenda Cervantes Vergara

The CCD Program – OSCURA

images borrowed from Brenda Cervantes Vergara's talk at IDM2024 tomorrow

25,600 CCDs \rightarrow 1,600 MCMs \rightarrow 100 SMs \rightarrow 10 kg!

Cylinder-like array ~12.5 kg total (10 kg effective) mass

Construction planned starting late 2025 SNOLAB

see Thurs. talk from Brenda Cervantes Vergara

The CCD Program – OSCURA

NTL-Amplification – Neganov-Trofimov-Luke Effect

images borrowed from Belina von Krosigk's talk at Invisibles24 Workshop

Clever way to search for individual e-h pair creation with a phonon sensor!

Amaral et al, PRD 102, 091101 (2020) [arXiv:2005.14067]

Pros: <u>in-situ aggregate discrimination</u>, <u>target-agnostic</u>*, timing, 1-10 dru backgrounds **Cons**: large dark rates, limited position information, no event-by-event discrimination

NTL-Amplification – Neganov-Trofimov-Luke Effect

images borrowed from Belina von Krosigk's talk at Invisibles24 Workshop

Clever way to search for individual e-h pair creation with a phonon sensor!

Pros: <u>in-situ aggregate discrimination</u>, <u>target-agnostic</u>*, timing, 1-10 dru backgrounds **Cons**: large dark rates, limited position information, no event-by-event discrimination

NTL-Amplification – SuperCDMS HVeV / LEGENDRE

images borrowed from Emanuele Michielin's talk at EXCESS24 see also Amaral et al, PRD 102, 091101 (2020) [arXiv:2005.14067]

Detectors installed at CUTE

😤 Fermilab

NTL-Amplification – EDELWEISS HV

- Sub-e resolution has been achieved (0.5e⁻)
- First demonstration of subelectron resolution in a solidstate material other than silicon
- Lays groundwork for other materials...

Novel Material Development – SPLENDOR

images borrowed from Sam Watkins (as Caleb Fink)'s IDM2024 talk yesterday

• Novel narrow-gap semiconductor materials engineered for sub-eV e-h pair collection

Cons: R&D required, unknown dark rates, no position information

see Tues. talk from Sam Watkins (as Caleb Fink)

• Charge-hole pair detection is fundamentally limited by material band gaps

• Pushing to lower masses requires novel detector R&D in phonon detection

 $\Delta E \sim 10 - 100 \text{ meV}$ e.g. GaAs, sapphire, Dirac materials, doped s/c, ...

 $\Delta E \sim 1 \text{ meV}$ e.g. superfluids, superconductors

DElight

Essig et al, Snowmass CF1 WP2 (2022) [arXiv:2203.08297]

Coskuner et al, PRD 105, 015010 (2022) [arXiv:2102.09567]

Adari et al, (2023) [arXiv:2312.13342]

🚰 Fermilab

Coskuner et al, PRD 105, 015010 (2022) [arXiv:2102.09567]

Adari et al, (2023) [arXiv:2312.13342]

Detectors Searching for Phonons

- **1. TES-based Crystal Detectors**
 - TESSERACT (SPICE)
- 2. Superfluid Helium Detectors
 - TESSERACT (HeRALD)
 - DELight
- 3. MKID-based Detectors
 - BULLKID
- 4. Superconducting Qubit Sensors
 - Cosmic Quantum (CosmiQ) at FNAL
 - SQUATs

Battaglieri et al, Cosmic Visions Report (2017) [arXiv:1707.04591]

Quasiparticle Detection – Transition Edge Sensors

slide borrowed from Roger Romani's IDM2024 talk tomorrow

Pros: sub-eV phonon thresholds, timing

Cons: limited position information, no event-by-event discrimination

see Tues. talk from Christina Schwemmbauer

Quasiparticle Detection – TESSERACT

images borrowed from Roger Romani's talk at EXCESS24

- Sapphire (Al₂O₃) optical phonon modes kinematically-matched to sub-MeV DM (need 10 meV energy thresholds)
- Gallium arsenide (GaAs) scintillation light can be collected in addition to phonon signals, potentially enables discrimination
- Superfluid He (LHe) scintillation, triplet excimer signals, and phonon/rotons provide many signals for strong discriminatory power

Quasiparticle Detection – SPICE

images borrowed from Roger Romani's IDM2024 talk tomorrow

Sapphire

10-100 meV optical phonon modes make for great DM target

see Thurs. talk from Roger Romani

<u>GaAs</u>

Multiple detection channels (light+phonons) allows for event-by-event discrimination

Quasiparticle Detection – Superfluid Helium

Three signal channels at different times!

- 1. Prompt scintillation (dimer state)
- 2. Quantum evaporation (phonon/rotons)
- 3. Slow scintillation (trimer state)

Non-helium impurities freeze out \rightarrow self-shielding!

Pros: sub-eV thresholds, event-by-event discrimination(!), scalable(!), radiopure(!), timing, ...
Cons: R&D required

Quasiparticle Detection – HeRALD

Currently constructing and optimizing prototype detector at LBNL

Anthony-Petersen et al (2023) [arXiv:2307.11877]

see Thurs. talk from Scott Haselschwardt

von Krosigk et al, SciPost Phys. Proc. 12, 016 (2023) [arXiv:2209.10950]

Quasiparticle Detection – MKIDs

🚰 Fermilab

• Potentially a nice (RF) alternative to (DC) TES-based sensors

Temples et al (2024) [arXiv:2402.04473]

Pros: <u>highly multiplexable</u> \rightarrow position resolution, eV phonon thresholds, timing, compatible with qubits **Cons**: R&D required to improve thresholds, no event-by-event discrimination

see Tues. talk from Karthik Ramanathan

Quasiparticle Detection – BULLKID

images stolen from Matteo Folcarelli's talk at EXCESS24

see Tues. talk from Marco Vignati

Quasiparticle Detection (+?) – Superconducting Qubits

🚰 Fermilab

McEwen et al, Nature 18, 107 (2022) [arXiv:2104.05219]

Pros: <u>sensitive to ueV-scale single-quanta</u>, timing, position sensitivity, synergistic with QIS **Cons**: substantial R&D required

see Tues. talks from Karthik Ramanathan and Anirban Das for more ways to use qubits as sensors

Quasiparticle Detection (+?) – Superconducting Qubits

🚰 Fermilab

McEwen et al, Nature 18, 107 (2022) [arXiv:2104.05219]

Pros: <u>sensitive to ueV-scale single-quanta</u>, timing, position sensitivity, synergistic with QIS **Cons**: substantial R&D required

see Tues. talks from Karthik Ramanathan and Anirban Das for more ways to use qubits as sensors

Radiation Impact on Superconducting Qubits (RISQ) Workshop

Photo credit: Dan Savoboda, Fermilab

QUIET Underground Facility Quantum <u>U</u>nderground <u>Instrumentation Experimental <u>T</u>estbed</u>

Quasiparticle Detection (+?) – Superconducting Qubits

Linehan et al (2024) [arXiv:2404.04423], fit to data from Harrington et al, (2024) [arXiv:2402.03208]

Quasiparticle Detection (+?) – SQUATs

• Combine this with collection fins to improve phonon collection efficiency

Fink et al (2023) [arXiv:2310.01345]

That's a lot of detectors...

- 1. Energy Threshold
 - At a minimum, need eV-scale thresholds to be competitive
 - R&D is pushing towards meV-scale energy thresholds
- 2. Exposure
 - Not as important as for WIMP searches
 - Current best limits have kg-days

3. Backgrounds

- Complicated, non-radiogenic excess backgrounds plague lower energies
- (here there be dragons)

Back-up Slides

Acknowledgements – CosmiQ@FNAL

FNAL Group Daniel Baxter Daniel Bowring Gustavo Cancelo Aaron Chou Lauren Hsu Sami Lewis* Ryan Linehan Kelly Stifter* Sara Sussman **Dylan Temples** Sho Uemura Matthew Hollister Chris James Hannah Magoon* Grace Wagner* Stella Dang

NU Group Enectalí Figueroa-Feliciano Riccardo Gualtieri Grace Bratrud Arianna Colón Cesaní Deeksha Sabhari Shilin Ray

IIT Group

Rakshya Khatiwada Kester Anyang Israel Hernandez Jialin Yu

Fermilab

*group alumni

Quantum Science Center

- US Department of Energy recently funded five National Quantum Information (NQI) Science Research Centers to advance QIS technologies in the US
- ORNL hosts the <u>Quantum Science Center</u> (QSC) which includes as one of its three thrusts the goal of ensuring some of this investment goes back into discovery science (led by FNAL)

Thrust 3: Quantum Devices and Sensors for Discovery Science

Thrust 3 develops an understanding of fundamental sensing mechanisms in high-performance quantum devices and sensors. This understanding allows QSC researchers, working across the Center, to co-design new quantum devices and sensors with improved energy resolution, lower energy detection thresholds, better spatial and temporal resolution, lower noise, and lower error rates. Going beyond proof-of-principle demonstrations, the focus is on implementation of this hardware in specific, real-world applications.

Led by Fermilab's Aaron Chou

To get a mature estimate of reach, we need to simulate how energy deposits propagate through a detector to impact T1 decoherence times.

Creating a full simulation chain to model the decoherence response of a qubit to energydeposition in the substrate

- Simulate phonon propagation in the chip, and determine phonon collection probability η_{ph} (G4CMP)
 - w/ ground plane: $\eta_{ph} \approx 0.1\%$
 - w/out ground plane: $\eta_{ph} \approx 2\%$
 - w/ collection fins: $\eta_{ph} \approx 15\%$ *

Linehan et al, "Estimating the Energy Threshold of Phonon-mediated Superconducting Qubit Detectors Operated in an Energy-Relaxation Sensing Scheme " (2024) [arXiv:2404.04423]

Creating a full simulation chain to model the decoherence response of a qubit to energydeposition in the substrate

- 1. Simulate phonon propagation in the chip, and determine phonon collection probability η_{ph} (G4CMP)
- 2. Model the quasiparticle population dynamics in the superconductor

Linehan et al, "Estimating the Energy Threshold of Phonon-mediated Superconducting Qubit Detectors Operated in an Energy-Relaxation Sensing Scheme " (2024) [arXiv:2404.04423]

🛠 Fermilab

Creating a full simulation chain to model the decoherence response of a qubit to energydeposition in the substrate

- 1. Simulate phonon propagation in the chip, and determine phonon collection probability η_{ph} (G4CMP)
- 2. Model the quasiparticle population dynamics in the superconductor
- 3. Model the quantum state evolution and readout scheme

Linehan et al, "Estimating the Energy Threshold of Phonon-mediated Superconducting Qubit Detectors Operated in an Energy-Relaxation Sensing Scheme" (2024) [arXiv:2404.04423]

Creating a full simulation chain to model the decoherence response of a qubit to energydeposition in the substrate

- 1. Simulate phonon propagation in the chip, and determine phonon collection probability η_{ph} (G4CMP)
- 2. Model the quasiparticle population dynamics in the superconductor
- 3. Model the quantum state evolution and readout scheme
- 4. Determine the sensitivity of a single qubit

Linehan et al, "Estimating the Energy Threshold of Phonon-mediated Superconducting Qubit Detectors Operated in an Energy-Relaxation Sensing Scheme " (2024) [arXiv:2404.04423]

Creating a full simulation chain to model the decoherence response of a qubit to energydeposition in the substrate

- 1. Simulate phonon propagation in the chip, and determine phonon collection probability η_{ph} (G4CMP)
- 2. Model the quasiparticle population dynamics in the superconductor
- 3. Model the quantum state evolution and readout scheme
- 4. Determine the sensitivity of a single qubit
- 5. Determine the sensitivity of the whole chip

Linehan et al, "Estimating the Energy Threshold of Phonon-mediated Superconducting Qubit Detectors Operated in an Energy-Relaxation Sensing Scheme" (2024) [arXiv:2404.04423]

🗲 Fermilab

Creating a full simulation chain to model the decoherence response of a qubit to energydeposition in the substrate

- 1. Simulate phonon propagation in the chip, and determine phonon collection probability η_{ph} (G4CMP)
- 2. Model the quasiparticle population dynamics in the superconductor
- 3. Model the quantum state evolution and readout scheme
- 4. Determine the sensitivity of a single qubit
- 5. Determine the sensitivity of the chip
- 6. Test it with data (Harrington et al)

Linehan et al, "Estimating the Energy Threshold of Phonon-mediated Superconducting Qubit Detectors Operated in an Energy-Relaxation Sensing Scheme" (2024) [arXiv:2404.04423]

Cryogenic Optical Calibration

<u>Goal</u>: Design a modular calibration system that can thermalize to the MCP and steer a beam of single-photons repeatably and precisely over the surface of a device for characterization

MEMS mirror used to steer laser beam

- Capacitively controlled by DC bias lines
- No power dissipation while stationary
- Modified control lines to function at cryogenic temperatures (10mK)
- Large deflection angles ($< \pm 5^{\circ} = cm^2$)
- High deflection resolution (0.001°)
- High broadband reflectance

Stifter et al, "Cryogenic optical beam steering for superconducting device calibration" (2024) [arXiv:2405.02258]

Cryogenic Optical Calibration

CAD model of enclosure (March 2022) **3D print prototype** (April 2022) Copper enclosure (June 2022)

Stifter et al, "Cryogenic optical beam steering for superconducting device calibration" (2024) [arXiv:2405.02258]

Cryogenic Optical Calibration

- Initial tests with MKID are successful!
- Scanning system does not significantly add power to the fridge
- Photon position is reproducible and precise (~100 microns)
- Testing with transmon qubits is underway

Stifter et al, "Cryogenic optical beam steering for superconducting device calibration" (2024) [arXiv:2405.02258]

