Illuminating the Dark Universe with Euclid

Andrea Cimatti

University of Bologna Department of Physics and Astronomy

On behalf of the Euclid Consortium

15th International Workshop on the Identification of Dark Matter - L'Aquila, Italy

The Big Questions

Cosmological constant? Scalar field?

Or breakdown of GR?

Nature?Or breakdown of GR?

Cirelli, Strumia & Zupan (2024)

The Cosmic Web as a Laboratory

\succ Expansion of the box \rightarrow Hubble parameter $H(z) \rightarrow$ Dark Energy

 \succ Growth and shape of structures inside the box \rightarrow Dark Matter and Gravitation

Examples at a Fixed Redshift

100 Mpc

The Promise of Euclid

ESA Cosmic Vision 2015-2025

SPACE

PI A. Refregier (CEA)

PI A. Cimatti (Uni Bologna)

Merging of **SPACE** (PI A. Cimatti) and **DUNE** (PI A. Refregier) Cosmic Vision proposals (2007) for M2 missions

- 2008 2009: Assessment Phase
- 2010 2011: Definition Phase
- **2012**: Adoption by ESA
- **2015**: PDR \rightarrow construction
- **2018**: CDR passed
- 2023: <u>launch on July 1st (L2 orbit)</u>
- **Survey duration**: \geq 6 years
- ESA + Euclid Consortium + NASA + CSA + Japan + Industries
- □ Global collaboration: 21 countries, >300 institutions, >3500 people

Sun shield (Thales Alenia Space)

Service Module (Thales Alenia Space)

Telescope 1.2 m (Airbus Defence and Space)

Instruments (VIS+NISP) (Euclid Consortium)

Euclid Intruments for Imaging and Spectroscopy

FoV: 0.787 x 0.709 deg²

VIS

Imaging 1 filter (red) 36 CCDs 0.1"/pix $m_{AB} \leq 24.5$

NISP

Imaging & Spectroscopy

3 filters (YJH) + 2 grisms 16 detectors 0.3"/pix $m_{AB} \leq 24.0$ R~380

Reconstruction of the 3D cosmic

Wide Survey: 15,000 deg²

Cosmological survey Imaging + spectroscopy (red grism)

Deep Survey: 53 deg²

6x deeper than Wide Survey Imaging + spectroscopy (blue & red grism) Calibrations and Legacy Science

Euclid Ground Segment

ASTRONOMY SCIENCE ARCHIVE: MAXIMISING SCIENCE FROM OUR MISSIONS

Spacecraft data arrive at ESA's European Space Operations Centre (ESOC) in Germany via ground stations around the world

eesa

Sa Science archive ESA's Science Operations Centre (ESAC) in Spain

Data products (images, spectra, measurements, catalogues...)

Raw data

Euclid Consortium (EC)

Data Release 1 (2500 deg²): ~mid 2026

Raw data are processed by the EC Science Ground Segment, responsible for providing data centres and software.

The processed data products include calibrated images and spectra, catalogues of scientific measurements, and documentation.

The EC includes over 2000 international scientists and contributed Euclid's instruments, VIS and NISP.

Scientific community

Data are available to all for decades, ensuring long-term science return and supporting future missions

Science

Planning future missions

First Euclid Data!

- PSF
 Throughput
 Sensitivity
- ✓ Stability

VIS and NISP perform as expected!

What Do We Expect?

Same mission

- 3D Cosmic web evolution (last 10 Gyr)
- Evolution of the Hubble parameter
- Matter power spectrum
- Nature of Dark Energy
- $\circ~$ New constraints on Dark Matter
- Verification of General Relativity
- Properties of neutrino
- Formation and evolution of galaxies and supermassive black holes

$\circ \ \ldots$ and much more!

Weak gravitational lensing

HST data COSMOS field

Massey et al. 2007

Clustering of Galaxies

Baryonic Acoustic Oscillations and Redshift-space Distorsions

The Power of Euclid

Space-based data!

Multiple probes:

- Weak lensing
- Galaxy clustering
- CMB cross-correlations
- Clusters of galaxies
- Strong lensing

Mitigation of systematics

Mitigation of degeneracies

Improvement: 1-2 dex with respect to current constraints

Dark Matter with Euclid

Where

How

What

When

or Wrong?

Cosmic web and growth of structure depend strongly on DM properties

125 Mpc

WDM or CWDM: suppression in the power spectrum at small scales, halo mass function, clusters number counts, redshift evolution

SIDM: upper limit cross section $\sigma/m \sim 10^{-27} \, \text{cm}^2 \, \text{GeV}^{-1}$ (3 dex better than today from the *bullet cluster*)

Unified DM (DM & DE manifestations of a single dark component): oscillations in the power spectrum

Test of Modified

Ultra-light scalar fields (10⁻³³ -10⁻¹⁸ eV): growth of structure and features in the matter power spectrum

Properties of the only known (but subdominant) non-baryonic DM particle: standard neutrino absolute mass scale, normal or inverted hierarchy, Dirac or Majorana nature

Effects of the DM environment on luminous matter, galaxy evolution and structure formation

Slope of DM density profile within galaxies and clusters with unprecedented accuracy

Gravity models

