Cryogenic facilities at INFN Pisa

BULLKID-DM meeting, 19-20 March 2024 LNGS

Liquified noble gases

- INFN Pisa cryogenic lab dates back to 2002 when we installed a test station
 - LXe calorimetry studies for the MEG experiment (T=170 K)
 - LN₂ cooling
 - single stage GM cooler + pulse tube cooler
 - test of >400 PMTs submerged in LXe
 - radioactive sources in liquid for testing purposes
 - charge & light collection in liquid Xenon (FIRB project)
 - dual phase TPC
 - single phase TPC with light amplification in Xe

$2014 \rightarrow Cosmology$

- Starting from 2014, we started collaborating to a project in Experimental Cosmology
 - LSPE/SWIPE for CMB polarization.
- Readout of SQUIDs with frequency-domain multiplexed TES detectors at 300 mK
 - We designed and assembled a custom cryostat with a 300 mK sorption cooler
 - 4K cold head from Sumitomo \rightarrow 1W @4K
 - 260 mK stage by Chase Cryogenics (20µW @300 mK, 200 µW @900mK)

• 300 mK instrumentation lab

INFN

- DB37, MDM connectors, SMA flanges already procured
- Lock-in amplifiers, network analyzers, LNAs, Resistance bridges...
- characterization of cryogenic sensors and electronics

Gluing and bonding

- Our > 500 m² clean room technical personnel is well experienced in assemblying silicon detectors for HEP experiments
- Smoothly helped in designing PCBs, gluing, bonding sensors and superconducting electronics (LCs, SQUIDs) for our cryogenic experiments.
- Measurement of MUX schemes

• LC filters for TES multiplexing

INFN

• 60x MUX for TES readout in the 1→5 MHz range

Measurements on TES

- We characterized TES on a spiderweb sensor for LSPE/SWIPE,
 - measurements of Tc, G, C

INFN

τ characteristic time from LED and α-source at 300mK

LSPE + LiteBIRD

- We gained experience in cryogenic devices and electronics
- Responsibility of the delivery of the SQUID Controller Units for the LiteBIRD CMB polarization experiment

LSPE + LiteBIRD

- We characterized TES on a spiderweb sensor for LSPE/SWIPE,
 - measurements of Tc, G, C
 - τ characteristic time from LED and a-source at 300mK

LSPE + LiteBIRD

- We characterized TES on a spiderweb sensor for LSPE/SWIPE,
 - measurements of Tc, G, C
 - τ characteristic time from LED and α -source at 300mK

New cryogenic laboratory

- To fully accept the readout boards \rightarrow need to test in a representative environment
- Assembled new Pisa Cryolab (<u>https://sites.google.com/unipi.it/pisalab</u> in progress)
 - Designed to be compliant with tests for space applications

INFN

- financed under ASI "Space characterization of electronics and devices" + INFN
- test of LiteBIRD readout chain (TES @100 mK, sub-K SQUID stage)
- Bluefors SD to be installed in EMI shielded room (delivered today 20 March!)

PISA LAB

Physics Investigations with Sub-Kelvin Apparatus

https://sites.google.com/unipi.it/pisalab

Largo Bruno Pontecorvo, 56127 Pisa (PI)

Research Areas:

LiteBIRD

<u>LSPE</u>

<u>BULLKID</u>

<u>Qub-IT</u>

Publications

PISA LAB

Physics Investigations with Sub-Kelvin Apparatus

https://sites.google.com/unipi.it/pisalab

Largo Bruno Pontecorvo, 56127 Pisa (PI)

Team Members

Staff

PISA Lab

Publications Theses Wiki

Info

Research Area

Michele Pinchera

Maurizio Massa

Andrea M

LiteBIRD

<u>LSPE</u>

<u>BUI</u>

Mario De Lucia

PhD Students

Publications

Tommaso Lari

Paolo Del Bo

Former Members

Andrea Sa

Bluefors SD

Free KF40

Pulse Tube

Free KF40

Main Harness

Free KF25 (Top KF40)

Characteristics

INFN

- Base temperature < 30 mK
- 250 µW Cooling power at 100 mK
- < 12 h cool-down time
- Ports and connectors
 - 2 x KF40 + 1 x KF25
 - DC wiring: 12x twisted NbTi/CuNi to MXC
 - DC wiring: 12x twisted PhBr to MXC
 - DC wiring: 12x twisted PhBr to 4K
 - 4x SMA to MXC sCuNi 0.86 mm w/cryo attenuators

	RF Installation set							Attenuators		
	Connector type	RT-50K	50K-4K	4K-Still	Still-CP	CP-MXC	50K	4K	Still	МХС
1.1	SMA	SN086	SN086	SN086	SN086	SN086	1dB	20dB	20dB	20dB
1.2	SMA	SN086	SN086	SN086	SN086	SN086	10dB	20dB	6dB	20dB
1.3	SMA	SN086	SN086	SN086	SN086	SN086	0dB	0dB	0dB	0dB
1.4	SMA	SN086	SN086	SN086	SN086	SN086	0dB	0dB	0dB	0dB
				DC lines					Break.out	
	EM Shielding	RT-50K	50K-4K	4K-Still	Still-CP	CP-MXC	50K	4K	Still	МХС
1.1	Yes	Cu		NbTi/CuNi	NbTi/CuNi	NbTi/CuNi		Yes		Yes
1.1	Yes	PhBr		PhBr	PhBr	PhBr		Yes		Yes
1.1	Yes	Ph	Br					Yes		

Ø309.6

16

Fabrication capabilities

- At the beginning of the LSPE project we realized Nb inductors at NEST-SNS Laboratories in Pisa
- We gained knowledge on fabrication and processes.
- Lately we just designed patterned structures and had them fabricated elsewhere
 - StarCryo SantaFe (NM)

INFN

INFN

New "wet" lab

- Possibility to fabricate structures in our clean rooms in a collaboration between University and INFN (Dipartimento di Eccellenza)
 - DMO Microwriter Baby+ (1 µm resolution, 4")
 - Zeiss Focussed-ion beam
 - Kurt J Lesker PVD75 Thermal evaporator (AI, Au, Ti, Ni, Cr)
 - Spin coater, MJB4 mask aligner
 - realize SC detectors in house (KIDs, TESs, nanowires...)

Conclusion

• Cryogenic lab with

NFN

- 300 mK sorption cooler
 - DC lines
 - SQUID, TES tests
- 30 mK dilution fridge inside EMI chamber
 - DC lines
 - RF lines for KIDs readout
- Training of people
 - Students
 - Reserchers/Technologists
 - Technicians.
- Clean room facilities
 - Gluing, Bonding, support
- Wet laboratory
 - Newly set-up
 - start sensor production before the summer.
- INFN Mechanical workshop
 - EDM
 - standard machines and tools

