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Device fabrication in Grenoble (PTA Cleanroom)
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Fabrication

Testing

Design

Goals of the KID R&D:
• Increase device robustness

• Increase responsivity to 

phonon signals

• Scale to 100mm array

• Test KIDs on Germanium



Robustness: feedline improvements
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A wider coplanar waveguide is more 

resistant to defects -> higher yield



Capacitive coupling: meander no longer overlaps grooves
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Phonons are less likely to be in 

the grooved region connecting 

the dice

Move inert capacitive fingers 

over the groove increases 

phonon collection



         
              

    

    

    

   

   

   

   

   

   

 
 
 
  
 
 
  
 
  

              

                  

Optimization of the KID responsivity
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Energy to quasi-

particles efficiency

𝐿𝑘

𝐿𝑡𝑜𝑡
 depends on pixel 

geometry and material

Quality factor of the 

resonator

Volume of the KID

Gap of the 

superconductor metal

Goal: maximize SNR

𝑺𝒊𝒈𝒏𝒂𝒍

𝑵𝒐𝒊𝒔𝒆

Noise not fully understood

Difficult to reduce



Optimization of the KID responsivity: 𝛼
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To increase 
𝐿𝑘

𝐿𝑘+𝐿𝑀𝐴𝐺
 we can

Tune the geometry to 

reduce 𝐿𝑀𝐴𝐺

Tune the metallic layer to 

increase 𝐿𝑘

Base design: 60nm Al

𝛼 = 5%

Q around 100k

Δ0 = 1.880 ⋅ 10−4𝑒𝑉
KID Volume: 4𝑚𝑚2 × 60𝑛𝑚 =
2.4 ⋅ 105𝜇𝑚3  

20 𝜇𝑚

8 𝜇𝑚



Optimization of the KID responsivity: 𝛼 – AlTiAl trilayer
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Al 14 nm / Ti 33 nm / Al 30 nm

𝑇𝑐 = (835 ± 5) mK; Δ0 = 1.266 ⋅ 10−4𝑒𝑉

Fit for 𝜶 with 𝜟𝟎 fixed:

• 𝜶 = 𝟐𝟒%
(Cardani2018 reports     

𝜶 = 𝟏𝟕% and 𝑻𝒄 = 𝟖𝟎𝟓 mK)



Optimization of the KID responsivity: 𝛼 – AlTiAl trilayer

8

Al 14 nm / Ti 33 nm / Al 30 nm

𝑇𝑐 = (835 ± 5) mK; Δ0 = 1.266 ⋅ 10−4𝑒𝑉

Fit for 𝜶 with 𝜟𝟎 fixed:

• 𝜶 = 𝟐𝟒%
(Cardani2018 reports     

𝜶 = 𝟏𝟕% and 𝑻𝒄 = 𝟖𝟎𝟓 mK)

Huge increase in 𝛼 (x4!)

Smaller gain from Δ0

However:

Fabrication is more complex

The trilayer is not well explained by the BCS theory



Optimization of the KID responsivity: 𝛼 – 30nm Al (Thin wafer)
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𝑇𝑐 = 1.4 K –> Δ0= 2.12 ⋅ 10−4𝑒𝑉
Fit for 𝛼 with Δ0 fixed:

• 𝛼 ≈ 16%
𝜶𝟑𝟎𝒏𝒎 ≈ 𝟑 ⋅ 𝜶𝟔𝟎𝒏𝒎
𝑽𝟑𝟎𝒏𝒎 = 𝟎. 𝟓 ⋅ 𝑽𝟔𝟎𝒏𝒎
However we expect 

𝜼𝟑𝟎𝒏𝒎 < 𝜼𝟔𝟎𝒏𝒎  

• BCS Compatible

• Overall gain in 
d𝜙

𝑑𝐸

• Standard 

fabrication process



Optimization of the KID responsivity: 𝛼 – 90nm Al (STACK-02)
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𝑇𝑐 = 1.2 K

Δ0 𝑇𝑐 = 1.76 ⋅ 𝑘𝐵 ⋅ 𝑇𝑐 = 1.880 ⋅ 10−4𝑒𝑉

Fit for 𝛼 with Δ0 fixed:

• 𝜶 ≈ 𝟑. 𝟑%

𝛼90𝑛𝑚 ≈
2

3
⋅ 𝛼60𝑛𝑚 that 

compensates

𝜼𝟗𝟎𝒏𝒎 > 𝜼𝟔𝟎𝒏𝒎  

More resilient to defects



Optimization of the KID responsivity: 𝛼 – Alternate geometries
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8 𝜇𝑚

4 𝜇𝑚



Optimization of the KID responsivity: 𝛼 – Alternate geometries
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𝑇𝑐 = 1.2 K

Δ0 𝑇𝑐 = 1.76 ⋅ 𝑘𝐵 ⋅ 𝑇𝑐 = 1.880 ⋅ 10−4𝑒𝑉 Fit for 𝛼 with Δ0 fixed:

• 𝜶 ≈ 𝟏𝟎%

Increase in 𝜶 without

reducing 𝜼

Compromise on a low 

𝑓0 and reduced yield



Scalability for the 100mm mask: simulations and thin wafer test
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• 145 pixels

• 49.3g of active silicon per wafer

• Constant cap trimming: 8um per step

• F∈ 720 ÷ 970 MHz

• dF ∈ 0.7 ÷ 3 MHz



Scalability for the 100mm mask: thick wafer
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Temporary holder, still a work in 

progress, dicing will be tested soon



Scalability for the 100mm mask: thick wafer
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Pixels: 134 out of 145

Median Q: 185k



Simulations of x-talk induced by proximity
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855 MHz855 MHz 966 MHz

966 MHz970 MHz 970 MHz

703 MHz

703 MHz

Induced current density: 3%Induced current density: 30%



Simulations of x-talk induced by proximity
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855 MHz855 MHz 966 MHz

966 MHz970 MHz 970 MHz

703 MHz

703 MHz

Induced current density: 3%Induced current density: 30%

Frequency scattering helps minimize x-talk

Mapping of the array is needed to reconstruct 

the physical position of the pixels



BULLKID v7 – Al90nm cryostat with optical window
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BULLKID v7 – Sky simulator
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Y

X

“Sky”: 100K 

blackbody

“Planet”: 300K 

blackbody

Frequency shift observed when the 

planet passes in front of a pixel



BULLKID v7 – Sky simulator mapping proof of concept

20

“Planet” pass in 

front of pixels



KIDs on Germanium for (CEνNS and DM)
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Same detection 
principle as WIMPs!

𝜎𝐶𝐸𝜈𝑁𝑆 ≈
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• Precision tests of the standard 

model (es sin2 𝜃𝑊)

• Nuclear waste monitoring

𝑄 = 104𝑘
𝑄𝑐 = 256𝑘
𝑄𝑖 = 170𝑘

𝝈𝑮𝒆 ≈ 𝟏𝟎 ⋅ 𝝈𝑺𝒊
However Ge oxide is not inert!

Qi seems promising, energy calibration 

is the next step



Conclusion: next work
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• Finalizing the 4 inch mask

• Settle for an optimized pixel to 

achieve lower threshold

• Energy resolution + improved 

process for a germanium 4-pixel 

sample



(Extra) Calder-GE Pulse Decay Time
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KID 1: 82 μs

KID 2: 85 μs

KID 3: 100 μs
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(Extra) Pulse Rise Time
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KID 1: 20 μs

KID 2: 20 μs

KID 3: 35 μs



(Extra) GE Noise Power Spectrum
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(Extra) BULLKID Noise Power Spectrum
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(Extra) Capacitive coupling: meander no longer overlaps grooves
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Phonons are less likely to be in 

the grooved region connecting 

the dice

Move inert capacitive fingers 

over the groove increases 

phonon collection



(Extra) S21 scan of bonded AlTiAl wafer
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Irregular spacing, excess attenuation (circa -35 dB)

Feedline likely interrupted

57 detected resonators 



(Extra) Pulse timings Al vs Al-Ti-Al
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Pulse @5keV

Al Q=400k

RiseTime = 0.21 ms

DecayTime = 2.35 ms

Al-Ti-Al Q=680k

RiseTime = 0.22 ms

DecayTime = 0.39 ms
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(Extra) AlTiAl alpha estimate from frequency shift

30
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