BULLKID: KIDs Research and Developement

20/03/2024 – BULLKID-DM Meeting – LNGS

Daniele Delicato for the BULLKID collaboration

Istituto Nazionale di Fisica Nucleare

Device fabrication in Grenoble (PTA Cleanroom)

0.84

0.86

0.88

Fabrication

Robustness: feedline improvements

A wider coplanar waveguide is more resistant to defects -> **higher yield**

Capacitive coupling: meander no longer overlaps grooves

Optimization of the KID responsivity

Optimization of the KID responsivity: lpha

Base design: 60nm Al $\alpha = 5\%$ Q around 100k $\Delta_0 = 1.880 \cdot 10^{-4} eV$ KID Volume: $4mm^2 \times 60nm =$ $2.4 \cdot 10^5 \mu m^3$ To increase $\frac{L_k}{L_k + L_{MAG}}$ we can Tune the geometry to reduce L_{MAG} Tune the metallic layer to increase L_k

Optimization of the KID responsivity: α – AlTiAl trilayer

Al 14 nm / Ti 33 nm / Al 30 nm $T_c = (835 \pm 5) \text{ mK}; \Delta_0 = 1.266 \cdot 10^{-4} eV$

$$\Delta(T_{\text{low}}) \approx \Delta_0 \cdot e^{-\sqrt{2\pi k_B T / \Delta_0} \cdot e^{-\Delta_0 / k_B T}}$$

$$\frac{\delta f}{f_0} = -\frac{\alpha}{2} S_2(\omega, T) \frac{\delta n_{qp}}{2N_0 \Delta}$$

Fit for α with Δ_0 fixed: • $\alpha = 24\%$ (Cardani2018 reports $\alpha = 17\%$ and $T_c = 805$ mK) Optimization of the KID responsivity: α – AlTiAl trilayer

Optimization of the KID responsivity: α – 30nm AI (Thin wafer)

 $T_c = 1.4 \text{ K} \rightarrow \Delta_0 = 2.12 \cdot 10^{-4} eV$

Fit for α with Δ_0 fixed: • $\alpha \approx 16\%$ $\alpha_{30nm} \approx 3 \cdot \alpha_{60nm}$ $V_{30nm} = 0.5 \cdot V_{60nm}$ However we expect $\eta_{30nm} < \eta_{60nm}$

- Overall gain in $\frac{d\phi}{dE}$
- Standard fabrication process

Optimization of the KID responsivity: α – 90nm AI (STACK-02)

 $T_c = 1.2 \text{ K}$ $\Delta_0(T_c) = 1.76 \cdot k_B \cdot T_c = 1.880 \cdot 10^{-4} eV$

More resilient to defects

Fit for
$$\alpha$$
 with Δ_0 fixed:
• $\alpha \approx 3.3\%$
 $\alpha_{90nm} \approx \frac{2}{3} \cdot \alpha_{60nm}$ that
compensates
 $\eta_{90nm} > \eta_{60nm}$

Optimization of the KID responsivity: α – Alternate geometries

Optimization of the KID responsivity: α – Alternate geometries

Scalability for the 100mm mask: simulations and thin wafer test

- 145 pixels
- 49.3g of active silicon per wafer
- Constant cap trimming: 8um per step
- F∈ 720 ÷ 970 MHz
- dF \in 0.7 \div 3 MHz

Scalability for the 100mm mask: thick wafer

Scalability for the 100mm mask: thick wafer

Simulations of x-talk induced by proximity

Induced current density: 30%

Induced current density: 3%

Simulations of x-talk induced by proximity

Induced current density: 30%

Induced current density: 3%

BULLKID v7 – Al90nm cryostat with optical window

BULLKID v7 – Sky simulator

BULLKID v7 – Sky simulator mapping proof of concept

KIDs on Germanium for (CEvNS and DM)

Nuclear waste monitoring

However **Ge oxide is not inert**! Qi seems promising, energy calibration is the next step

Conclusion: next work

- Finalizing the **4 inch mask**
- Settle for an optimized pixel to achieve **lower threshold**
- Energy resolution + improved process for a germanium 4-pixel sample

(Extra) Calder-GE Pulse Decay Time

(Extra) Pulse Rise Time

24

(Extra) GE Noise Power Spectrum

(Extra) BULLKID Noise Power Spectrum

(Extra) Capacitive coupling: meander no longer overlaps grooves

(Extra) S21 scan of bonded AlTiAl wafer

Irregular spacing, excess attenuation (circa -35 dB) Feedline likely interrupted 57 detected resonators

(Extra) Pulse timings Al vs Al-Ti-Al

(Extra) AlTiAl alpha estimate from frequency shift

•
$$f_M^B = f_M^A$$
 $\alpha = \frac{L_k}{L_k + L_M} \to f_0 = \frac{1}{\sqrt{C(L_k + L_M)}}$ (1)
• $f_0^B = 0.84$ $f_M = \frac{1}{\sqrt{C(L_M)}}$ (2)
• $\alpha^A = 4.98\%$ $\left(\frac{f_0}{f_M}\right)^2 = \frac{L_M}{L_k + L_M} = 1 - \frac{L_K}{L_M + L_k} = 1 - \alpha$ (3)
 $\frac{1 - \alpha_A}{1 - \alpha_B} = \left(\frac{f_0^A}{f_0^B}\right)^2 \cdot \left(\frac{f_M^B}{f_M^A}\right)^2$ (4)
 $\alpha_B = 1 - (1 - \alpha_A) \cdot \left(\frac{f_0^B}{f_0^A}\right)^2 = 20.1\%$ (5)