Simulations: BULLKID-DM setup at Gran Sasso

Eric Vázquez Jáuregui IF-UNAM, México March 19, 2024

Backgrounds, backgrounds, and backgrounds

How to catch a WIMP

- Many backgrounds from natural radioactivity
 - $-\operatorname{Neutrons}$
 - -Muons
 - Gammas, beta decays
 - alpha decays
 - $-\operatorname{Neutrinos}$

Backgrounds: $(> 10^{11-12} \text{ events/ton/year})$

• Go underground

• Shielding

• Material selection

WIMP scatters: (<1 event/ton/year)

BULLKID-DM setup at Gran Sasso

616.3 g in 15 Si wafers
Wafers: 5 cm radius, 5 mm thickness
11 x 11 dices

• In new Gran Sasso cryostat

Gran Sasso setup

- External backgrounds:
- ✓Gammas
- ✓Muons
- ✓ Neutrons

Backgrounds from Monte Carlo simulations using GEANT4

What we have now

Two GitHub repositories:

Experiment at Sapienza: https://github.com/ericvj/BULLKID_Sapienza

Experiment at Gran Sasso: https://github.com/ericvj/BULLKID_GranSasso

Languages

What we have now

- How to use in one-two-three:
- 1. clone: gh repo clone ericvj/BULLKID_GranSasso or git clone git@github.com:ericvj/BULLKID_GranSasso.git
- 2. cd BULLKID_GranSasso
- 3. make

provides compilation of GEANT4 and DANAE experiment

 You need a github account, request access to GEANT code Ready and working!

(compilation in 6 minutes and 8 sec with Apple M1 Pro)

Backgrounds at Gran Sasso

Gammas, muons, and neutrons

<u>Gammas</u>

More intense gamma lines from K40, U238, and Th232 chains simulated

Underground flux:

0.729 gammas/cm²/s

Table 2. Intensity of the main gamma lines $(\gamma/m^2/day)$ measured in the underground Hall A of LNGS. Only lines with intensity higher than $10^6 \gamma/m^2/day$ are listed. These are due to 40 K, and to the 238 U and 232 Th chains.

Energy [keV]	Isotope	Intensity $[\gamma/{ m m}^2/{ m day}]$
238.6	212 Pb	$2.8\cdot 10^6$
295.2	214 Pb	$3.8\cdot 10^6$
352	214 Pb	$7.9\cdot 10^6$
583	$^{208}\mathrm{Tl}$	$3.0\cdot 10^6$
609	214 Bi	$1.3\cdot 10^7$
911	$^{228}\mathrm{Ac}$	$3.1\cdot 10^6$
934	214 Bi	$2.1\cdot 10^6$
968	$^{228}\mathrm{Ac}$	$2.1\cdot 10^6$
1120	214 Bi	$6.3\cdot 10^6$
1238	214 Bi	$2.8\cdot 10^6$
1460	40 K	$2.9\cdot 10^7$
1764	214 Bi	$8.2\cdot 10^6$
2204	214 Bi	$3.1\cdot 10^6$
2614	208 Tl	$7.8\cdot 10^6$

Muon energy and angular distributions from Mei and Hime

Underground flux:

 3.2×10^{-8} muons/cm²/s

FIG. 7: The muon angular distribution local to the various underground sites based on equation (3). All curves have

Neutrons

Neutron energy distribution from several sources for 3 regions:

• Thermal

Radiogenic

Cosmogenic

E interval	Neutron Flux $(10^{-6} \text{cm}^{-2} \text{s}^{-1})$						
(MeV)	Ref. [1]	Ref. [2]	Ref. [3]	Ref. [4]	Ref. [5]	Ref. [6]	
$10^{-3} - 0.5$							
0.5 - 1			$0.54{\pm}0.01$				
1 - 2.5		$0.14{\pm}0.12$	(0.53 ± 0.08)				
2.5 - 3		$0.13{\pm}0.04$	$0.27{\pm}0.14$				
3 - 5			(0.18 ± 0.04)			2.56 ± 0.27	
5 - 10		$0.15{\pm}0.04$	$0.05{\pm}0.01$				
			(0.04 ± 0.01)	$3.0{\pm}0.8$	$0.09{\pm}0.06$		
10 - 15	$0.78 {\pm} 0.3$	$(0.4 \pm 0.4) \cdot 10^{-3}$	$(0.6\pm 0.2)\!\cdot\! 10^{-3}$				
			$((0.7 \pm 0.2) \cdot 10^{-3})$				
15 - 25			$(0.5\pm0.3)\!\cdot\!10^{-6}$				
			$((0.1 \pm 0.3) \cdot 10^{-6})$				

Results: shielding and PWO veto

No shielding

All backgrounds: No shielding

Fig. 6. Recoil spectra in a CaWO₄ detector induced by neutrons from different origins: (a) low energy neutrons from the rock/concrete, no neutron moderator, (b) low energy neutrons from the rock/concrete after being moderated by 50 cm polyethylene, (c) low energy neutrons from fission reactions of 0.1 ppb 238 U in the lead shield, (d) high energy neutrons induced by muons in the rock and (e) high energy neutrons induced by muons in the rock and (e) high energy neutrons induced by muons in the experimental setup.

Comparison with CRESST

How to reduce Gammas

Muons

Shielding (PWO is inactive)

Internal backgrounds: neutrons (two examples)

Copper, m =2.96 kg U238 =1.415E-11 n/s/g/ppb Th232 =7.335E-13 n/s/g/ppb Results assuming:

- 1 ppb U, Th in Cu
- 50 ppb U, Th in Al

Aluminum, m=20.41 kg U238 =1.647E-10 n/s/g/ppb Th232 =8.198E-11 n/s/g/ppb

Summary and Conclusions

- ✓ 1 event per year in the detector ~ 1×10^{-3} counts/kg/day in the ROI
- ✓ Shielding design is converging for external gammas and muons
- ✓ Shielding radiopurity?
- ✓ Simulate neutrons with current shielding
- ✓ Internal backgrounds need to be assesed
- \checkmark Design neutron shielding
- ✓ Validate muon induced neutrons in rock, shield and detector
- ✓ Active or inactive PWO?