Simulations: DANAE setup at Sapienza

Eric Vázquez Jáuregui IF-UNAM, México March 19, 2024 The three main things to consider when doing direct detection dark matter experiments

Backgrounds, backgrounds, and backgrounds

Cosmic rays and natural radioactivity

-

DANAE setup at Sapienza

Wafer details and cryostat

- Single Si crystal
- 3" in diameter and 5 mm thick

• Dice mass: 0.34 g

 Sapienza cryostat with geometry built from measurements and drawings

- Grooves included: 0.5 mm
- Dice dimensions: $5.4 \times 5.4 \times 5 mm^3$
- Bottom disk: 0.5 mm (included in the 5 mm dice)
- Copper ring included

MC model in GEANT4 implementing the Sapienza cryostat

Monte Carlo simulations of backgrounds using GEANT4

What we have now

Two GitHub repositories:

Experiment at Sapienza: https://github.com/ericvj/BULLKID_Sapienza

Experiment at Gran Sasso: https://github.com/ericvj/BULLKID_GranSasso

What we have now

- How to use in one-two-three:
- 1. clone: gh repo clone ericvj/BULLKID_Sapienza or git clone git@github.com:ericvj/BULLKID_Sapienza.git
- 2. cd BULLKID_Sapienza
- 3. make

provides compilation of GEANT4 and DANAE experiment

- You need a github account, request access to GEANT4 code Ready and working!

(compilation in 6 minutes and 8 sec with Apple M1 Pro)

Gamma-rays from the room at Sapienza

Validation of MC simulation

- Obtain gamma spectrum in Sapienza laboratory using spectrum from Nal (from Laura Cardani)
- Unfolding performed with 100 keV energy bins
- Flux = 13.47 γ /cm²/sec

Validation of MC simulation

- Nal internal backgrounds from crystal are negligible
- 1% approximately

Ge_A_Bckg_009 No sample description was entered.

Slide from: Beatrice Mauri

Data from: Riccardo Cerulli

Detector assembly (1)

Top HPGe crystal:

- φ= 70 mm, h = 20 mm, m=400 g
- impurity density < 10¹⁰ cm⁻³
- Electrodes: Al co-planar grid geometry (Interdigit detector)
- Bias: 10 V on one side, 0V on the other
- Gain: 1000
- Sampling frequency: 100 kHz

These electrodes are used like the planar electrodes.

4

Validation of MC simulation

 Simulated unfolded gamma spectrum of HPGe setup inside the cryostat

 Agreement with HPGe setup is ~15% from 100 keV to 3 MeV

Neutrons from the room at Sapienza

From Claudia Tomei

SETUP

- DIAMON was designed to enhance the isotropy of the angular response over the whole energy range and improve the overall mechanical design (higher versatility and portability)
 - > Overall dimensions: 25x25x30 cm³
 - Weight: 6 kg (ergonomic handle to carry it around)
- Control laptop (Lenovo IdeaPad C340-14IML, with touch screen)
- **Trolley bag for easy transport**

From Claudia Tomei

MEASUKEMENIS AI SAPIENZA	
Mea	surement in the laboratory of cryogenic detectors (floor 1)
Tue	May 19, Measurement Time: 2.1 d
> A	verage number of counts: 135
> F	lux : 0.010 cm ⁻² s ⁻¹
	thermal: 31%
	epithermal: 35%
	fast:34%

From Claudia Tomei

Subleading backgrounds on surface

Cosmogenic backgrounds at Sapienza: muons and neutrons

CRY generator

- Monte Carlo model of the Earth's atmosphere
- Primary protons in the energy range of 1 GeV - 100 TeV are injected at the top of the atmosphere.
- The codes follow the tracks of all relevant secondary particles (neutrons, muons, gammas, electrons, and pions) and tally their fluxes at selectable altitudes.
- Comparisons with cosmic ray data at sea level show good agreement.

C. Hagmann, D. Lange and D. Wright, "Cosmic-ray shower generator (CRY) for Monte Carlo transport codes," *2007 IEEE Nuclear Science Symposium Conference Record*, Honolulu, HI, USA, 2007, pp. 1143-1146, doi: 10.1109/NSSMIC.2007.4437209.

Figure 2: MC-generated neutron spectra at sea level. The incident proton energy is 1TeV.

Results for gammas and neutrons

Comparison to the experiment

Errors in the simulation are dominated by systematics from the gamma-ray (~15%) and neutron (~8.7%) spectra measurements

Error = 17.3%

Is it possible to shield on surface and considerably reduce the background?

Simulation of shielding configurations at Sapienza: holder material

Change of holder material:

Al, Cu, Pb

Cu in holder 5mm= 3.94×10^5

Cu in holder 10 mm= 2.63×10^5

Pb in holder 5mm= 2.80×10^4

Pb in all holder (5mm): 2.56 kg Cu in all holder, 5 and 10 mm: 2.02 and 4.54 kg Data = 1.89×10^{6}

Pb in holder (bottom)= 4.15×10^5

Pb in holder (bottom) and Cu in holder (10 mm)= 1.06×10^5

Pb in holder 5mm= 2.80×10^4

Pb in all holder (5 mm): 2.56 kg Pb in all holder (3 mm): 1.34 kg Pb in all holder (3 mm) and Cu in all holder (5 mm): 3.55 kg

Pb in holder 3mm= 8.60×10^4

Pb in holder 3mm and Cu in holder 5mm= 6.40×10^4

Pb in holder 5mm= 2.80×10^4

Pb in all holder (5 mm): 2.56 kg Pb in all holder (3 mm): 1.34 kg Pb in all holder (3 mm) and Cu in all holder (5 mm): 3.55 kg

External shielding configurations: several setups simulated with lead and water

Example of shielding configurations simulated

- Pb in holder (all and bottom half only):
 1.9 kg
- 1" Pb castle + Pb in holder
 (all): (230 + 1.9) kg
- 1" Pb base + 1" belt + Pb in
 holder (all): (130 + 1.9) kg

Data = 1.89×10^{6}

Pb in all holder= 2.80×10^4

Pb in all holder + 1" Pb castle= 1.01 ×10⁴

BULLKID data $MC = 1.02 \times 10^{6}$ Simulation: Gammas + Muons + Neutrons + Al day) Simulation: Gammas with Pb in holder (all) * Pb in all holder + 1" castle= $\frac{30}{510^7}$ Simulation: Gammas with 1" Pb + Pb in holder (all) 1.01×10^{4} counts/ ⁹010 Pb mass= 182.5 kg (if mumetal cover is removed) 10^{5} Thickness: 1 inch Height: \sim 32.5 cm 10^{4} ~ 2 orders of magnitude!! nn (H 0.2 0.8 0.6 0.4Energy (keV)

Going back to the experiment: comparison to data with shielding

10% difference in shielded Setup for a 4mm uncertainty in the position of the wafer

Optimization of the shielding

173 kg Pb 2 cm bricks (8) 1.25 cm base

180 kg Pb 2.5 cm bricks (5) 2.5 cm base

Simulations of a cryogenic active veto made of PWO

- 3 cm PWO crystal
- 3 Si waffers

Without vetoing

Vetoing all PWO events

Without vetoing

Vetoing all PWO events

Simulations of a cryogenic active veto made of PWO 50 keV energy cut

Vetoing all PWO events

Vetoing all PWO events

Vetoing PWO events

Summary and Conclusions

✓ Very good agreement between data and simulations

✓ Possible to reduce two orders of magnitude on surface (with relatively little effort)

Rate (Counts / kg / day / keV) 10² 10² CLEUS 1g prototype perCDMS CPD 107 10^{5} Event 101 10^{3} 0.25 0.50 0.75 1.00 1.25 1.50 1.75 Total energy deposition (keV) 0.05 0.10 0.15

Background issue in phonon experiments

P. Adari, et al.: EXCESS workshop: Descriptions of rising low-energy spectra SciPost Phys. Proc. 9 (2022) 001

✓ An internal veto on surface is valuable to learn its feasibility and assess capacity, possible issues What's next?

➤Keep optimizing shielding

- ➤add scintillation and quenching to crystal
- ➢ explore other crystals (BGO, CGO)