

Readout Systems for HEP and Quantum Circuits

Luis Ardila-Perez

Institute for Data Processing and Electronics (IPE)

(LHCb)

Superconducting sensors MMCs (ECHo)

Optical data transmission with Silicon Photonics

Monolithic CMOS sensor

Silicon Tracking System of the CBM experiment (FAIR)

Data visualization (USCT)

IPE has specialist groups in every step of the DAQ chain (from sensor design to data visualization/storage)

Research Interest: Next-Gen DAQ Systems

Designed and commissioned the readout system for the Silicon Strip Detector (SSD) at the STAR experiment

CMS Phase-2 L1 Track Finder

DAQ System for the CMS Phase-2 upgrade to read the Silicon Tracker and perform online data reconstruction

Cryogenic Superconducting Circuits

D. Richter (U. Heidelberg)

Metallic Magnetic Calorimeters

Highly precise, single particle detectors (1.6 eV at 6 keV)

Microwave SQUID multiplexed

Alexander Stehli (KIT)

Superconducting Quantum Bits

Building block for quantum computing

Key Requirements

- Operated at very low temperature (<100 mK)
- Interfaced with microwave signals 2 12 GHz
- Large signal **bandwidth** requirements < 500 MHz

Quantum Circuits require Frequency Division Multiplexing

Software Defined Radio (SDR) System Arch.

Software Defined Radio (SDR) DAQ System with a frequency mixing stage

QiController - System Architecture

Qubit characterization, full-stack ownership, defining the classical-quantum interface.

Simultaneous Qubit **Measurements**

Physikalisches

Institut

Measurement data

PtOube

Karlsruher Institut für Technologie

Damped sine fit

Parallel rabi experiment on a 5-qubit device

ECHo Experiment

The Electron Capture ¹⁶³Holmium experiment (ECHo)

- Investigates the upper limit of the electron neutrino mass
- Analyzes the energy spectrum in the electron capture process of ¹⁶³Ho
- Uses metallic magnetic calorimeters (MMCs) **BW > 1 MHz**
- Parallel readout of **12.000 sensors** using microwave **SQUID** multiplexing approach
- 400 channels per readout line with resonances between 4-8 GHz

ECHo detector + µMUX:

D. Richter (U. Heidelberg) Ho¹⁶³ spectrum:

Massively parallel detector array with 400 resonators per readout line

Custom designed electronics with discrete ADCs and DACs and a wideband frequency mixer board

QUBIC Experiment

Goal: Measurement of the B-mode polarization of the Cosmic Microwave Background (CMB) radiation

12

Qubic SDR-DAQ

ECHo electronics is suitable for QUBIC. However, Gen3 RFSoC devices offer higher integration factor

BULLKID Experiment

kg-scale, low-threshold and low-background Dark Matter or neutrino scattering experiment

DM

BULLKID requires 15 readout channels each with 60 KIDs and online data processing to trigger on events

BULLKID SDR-DAQ System Arch.

BULLKID Simple Filter Balun Board was designed and fabricated

IPE KryoDAQ Lab

• The **cryogenic DAQ lab** for characterization and development of next generation cryogenic detector DAQ (full chain evaluation)

Activities and goals at a glance

- Contributing to the definition of the **quantum computing stack** with a special focus on the **cryogenic room temperature interface** (e.g., ptQube, QBriqs, QSolid)
- Delivering electronics for readout of >1000 pixelated cryogenic detectors with a special focus on frequency multiplexed readout (e.g., ECHo, QUBIC, BULLKID)
- Delivering easy-to-use, scalable, highly integrated, and cost-efficient readout systems for the next generation experiments (e.g., KATRIN++)

Acknowledgments to the IPE-SDR group

Group Leader

P.D. Dr.-Ing. Oliver Sander

Post-Docs

Dr.-Ing. Luis Ardila-Perez Dr.-Ing. Luciano Ferreyro (USAM-KIT)

Doctoral Students

Timo Muscheid Lukas Scheller Marvin Fuchs Robert Gartmann Torben Mehner Manuel Garcia (USAM-KIT) Juan Salum (USAM-KIT)

Previous Members

Dr.rer.nat. Richard Gebauer(*) Dr.-Ing. Nick Karcher(*) Dr.rer.nat. Francesco Valenti

(*) Received Helmholtz Awards 2023 for doctoral thesis.

Quantum Interface Controller (QiC) for 30 Qubits

 All interfaces communicating the different boards are available in a test setup for evaluation of their performance and influence on factors like fidelity

FLUX-DAC-FPGA Slot Board

• A modular architecture based on ATCA was defined and it is currently in fabrication by FZJ-ZEA2 to realize a Quantum interface Controller (QiC) capable of scaling up to 100s of qubits.

ECHo readout electronics

ECHo Digital Signal Processing

