

BULLKID-DN introduction

Marco Vignati, LNGS, 19 March 2024

Dark Matter - direct search

What is the Dark Matter made of?

- primordial black holes?
- µeV/c² eV/c² axion-like waves?
- MeV/c² TeV/c² WIMP-like particles?

Cross Section [cm²]

J. Billard, et al, Direct Detection of Dark Matter – APPEC Committee Report, arXiv:2104.07634

State of the art (solid-state detectors)

State of the art of phonon detection (CRESST/NUCLEUS experiments)

Limitation: individual readout

Pro: record-low energy threshold ~ 20 eV

Future experiments point to kg targets (100+1000 crystals) challenging with this technology

Vignati - 5

Background issue in phonon experiments

Counts / [keV kg days]

P. Adari, et al.: EXCESS workshop: Descriptions of rising low-energy spectra SciPost Phys. Proc. 9 (2022) 001 + BULLKID 2023

Not understood *excess* background rising at low energies:

- Phonon bursts (crystal-support friction)? ullet
- Lattice relaxations after cool down? \bullet
- Phonon leakage from interactions in the supports?
- Neutrons (cosmic ray induced, radioactivity)? \bullet

This background limits the sensitivity of present experiments

Dark Matter - direct search with BULLKID

solid-state phonon detectors with:

- -zero background
- -kg target
- -threshold < 200 eV

With **BULLKID-DM** we can achieve these goals. How?

J. Billard, et al, Direct Detection of Dark Matter – APPEC Committee Report, arXiv:2104.07634

Kinetic Inductance Detectors

AC superconductivity

- Electrons bound into Cooper pairs (no dissipation)
- High quality factors (Q $\sim 10^4 10^6$)
- Inertia from the mass of pairs (kinetic inductance)

Kinetic Inductance Detector (KID)

- Superconductor at T < 200 mK (AI)
- LC resonator

Invented by J. Zmuidzinas and his group at Caltech in 2003 for astrophysical applications

superconductor under AC field E_{AC}

 Z_0

$$L_k = \frac{m_e}{2 e^2 n_{\text{pairs}}}$$

resonator $f_0 = 1/\sqrt{LC}$ Z_0 L $\Delta E \rightarrow \Delta n_{\text{pairs}} \rightarrow \Delta L_k \rightarrow \Delta f_0$

The BULLKID phonon detector array

BULLKID / Vignati - 9

carving of dices in a thick silicon wafer

lithography of multiplexed KID array

- 4.5 mm deep grooves
- 6 mm pitch
- chemical etching

0.5 mm thick common disk:

- holds the structure
- hosts the KIDs

KID array

- 60 nm aluminum film
- 60 KIDs lithography

60 detectors in 1

Fully multiplexed (single readout line)

Phonon leakage

- Phonons generated by interactions
 - 40% absorbed by the KID
 - the rest leaks in nearby voxels or decays below the KID aluminum gap
 - Measured energy leakage relative \bullet to central voxel:
 - (14 ± 3) % in each "+" voxel
 - (5 ± 1) % in each "x" voxel \bullet

This effect reduces the phonon focusing on the KID but it can be exploited to reconstruct the interaction voxel

Combined analysis of a 9-dice cluster

Measurement of the energy spectrum of the central voxel

Use the 8 external voxels as "veto" exploiting the phonon leakage

5 10 15 20 0

0

5 10 15 20 0 5 10 15 20

Time [ms]

- Cuts only

--- Cuts + trigger

Background: surface result Above ground lab, no shield, 39 live hours

The excess above trigger threshold is compatible with noise false positives. Background is flat above analysis threshold. BULLKID / Vignati - 13

D. Delicato et al, arXiv:2308.14399

Dark Matter - direct search with BULLKID-DM

solid-state phonon detectors with:

- -zero background
- -kg target
- -threshold < 200 eV

With **BULLKID-DM** we can achieve these goals. How?

	BULLKID- Surface	BULLKID-DM- Demo	BU
bkg (c/keV kg y)	2,000,000	10,000-1,000	
threshold (eV)	160	similar	sim
mass	0.35-20 g	20-60 g	

Mass and threshold improvement

Nuclear recoil detector with:

- ✓ 16 (4") or 30 (3") BULLKIDs (2000 voxels)
- 0.6 kg of silicon target \checkmark
- 200 ÷ 50 eV threshold (160 eV demonstrated)

Unique features for bkg. suppression:

- No inert material \checkmark in detector volume
- fully active \checkmark
- fiducialization

Towards the experiment

MC Simulations

Design of the apparatus Definition of required radiopurity

Apparatus

Cryostat outer shielding (PE, Pb, ...) Inner shielding Outer muon veto (scint. panels)? Cryo-veto around the BULLKIDs? (BGO/GSO + Light detector?)

Energy calibration

Not possible with fibers?: neutron recoils (a là CRAB)? Cs or Co Compton ?

BULLKID / Vignati - 17

µ veto Lead Polyethylene Copper Cryo veto T < 80 mK

Underground cryo-infrastructure Dilution refrigerator with T < 80 mK

RF Readout

~20 RF lines, SDR boards with sync, trigger logic (clusters)

> DAQ Data handling Data storage

Data analysis 2k pixel, cluster analysis

CLANAE stack of wafers

NUCLEUS: experimental apparatusabove ground experiment (3 m.w.e)In BULLKID: BGO/

C. Goupy et al [NUCLEUS Coll.], arXiv:2211.04189

a) 28 5-cm thick Muon Veto panels, b) a 5-cm thick lead layer, and c) a 20-cm thick borated polyethylene. d) A dilution refrigerator is inserted inside the shielding and contains e) a 4-cm thick boron carbide layer and f) a Cryogenic Outer Veto made of six high purity germanium crystals held by g) a copper cage. Finally the cryogenic detectors are organised in two arrays of nine cubes of i) CaWO4 and j) Al2O3, held by h) the silicon inner veto.

BULLKID / Vignati - 18

In BULLKID: BGO/GSO crystals read by the KID light detectors of CALDER?

Goals of this meeting

- Agree on WPs, assignements
- Delineate timescale and milestones
 - Macro milestone TBD: Demonstrator in early 2025
- Set Working Group on the CDR
- Next deadlines:
 - 1. June 2024: CDR for INFN
 - 2. Oct 2024: Presentation/Requests at LNGS committee
 - 3. Fundings in DE and MX?

BULLKID / Vignati - 19

	# WP		\$	Poor II.		2024						
	1 Collabora	tion	-		t			2025		201		
	2 Stack	E	RC	RM-Fo Nosi	Meeting	CDR					 202	?7
	3 Demonstra	tor El	RC	RM-Fe-Neol	assembly	4" test	Final		DR		 Ι	
5	Flectree	s î		MX	10 ⁴ DRU Surface		assembl < 10 ⁴ DRU	y Stack J ?	start			
6	RM1 Cryc	; ?	k	(IT-Pj	Sci. Impact	Under-ground	d	?				
7	LNGS Cryo) R	Μ	Tender	150 px						
8	Cryo veto	CSN	5 LN	VGS		Deliver 2	Delivery/ Shielding					
9	Calibration	CSN2		RM	PoC	Project	Shielding					
"	KID R&D	ERC	RM				Delivery	Tests				
\vdash	DAQ	CSN2	Pi				POC					
6	Computing	CSN2	Pi?			Project	Delivery					
G	ermanium	ERC	Bm F					Tests				

Letter of interest for BULLKID-DM: Search for Dark Matter with arrays of Kinetic Inductance Detectors at LNGS

L. Ardila-Perez,¹ P. Azzurri,² L. Bandiera,³ M. Calvo,⁴ R. Caravita,⁵ A. Cruciani,⁶ A. D'Addabbo,⁷ D. Delicato,^{4, 8, 6} G. Del Castello,^{8, 6} M. del Gallo Roccagiovine,^{8, 6} M. de Lucia,^{9, 2} F. Ferraro,⁷ R. Gartmann,¹ V. Guidi,^{10,3} L. Malagutti,³ A. Mazzolari,^{10,3} A. Monfardini,⁴ T. Muscheid,¹ D. Nicolò,^{9,2} F. Paolucci,² D. Pasciuto,⁶ E. Pedreschi,² V. Pettinacci,⁶ C. Roda,^{9,2} S. Roddaro,² M. Romagnoni,³ O. Sander,¹ G. Signorelli,² F. Simon,¹ F. Spinella,² M. Tamisari,^{11,3} A. Tartari,² E. Vazquez-Jauregui,¹² and M. Vignati^{8,6} ¹Institute for Data Processing and Electronics, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1 76344, Eggenstein-Leopoldshafen - Germany ²INFN - Sezione di Pisa, Largo Bruno Pontecorvo, 3, 56127 Pisa - Italy ³INFN - Sezione di Ferrara, Via Saragat,1 44121, Ferrara - Italy ⁴Univ. Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 38000 Grenoble, France ⁵INFN - TIFPA, Via Sommarive 14, I-38123 Povo (Trento) - Italy ⁶INFN - Sezione di Roma, Piazzale Aldo Moro 2, 00185, Roma - Italy ⁷INFN - Laboratori Nazionali del Gran Sasso, I-67100 Assergi (AQ) - Italy ⁸Dipartimento di Fisica - Sapienza Università di Roma, Piazzale Aldo Moro 2, 00185, Roma - Italy ⁹Dipartimento di Fisica - Università di Pisa, Largo Bruno Pontecorvo, 3, 56127 Pisa - Italy ¹⁰ Dipartimento di Fisica e Scienze della Terra, Università di Ferrara, Via Saragat 1, 44100, Ferrara, Italy Dipartimento di Neuroscienze e Riabilitazione, Università di Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy ¹² Universidad Nacional Autónoma de México (UNAM), Instituto de Física, Apartado Postal 20-364, México D.F., 01000, México (Dated: September 29, 2023) BULLKID-DM aims to conduct an experiment for the search of WIMP-like Dark Matter particles with GeV / sub-GeV mass and cross section down to 10^{-42} cm². The detector consists of a highly segmented array of thousands silicon targets sensed by Kinetic Inductance Detectors, with total target mass exceeding 0.5 kg and energy threshold below 200 eV. The proposed array structure avoids the use of inert material between the single sensitive units and enables fiducialization techniques for background reduction, not yet exploited in solid-state detectors searching for WIMPs. With this Letter We manifest our interest in operating the experiment at LNGS, possibly exploiting one of the planned cryogenic facilities.

Structure of this meeting

	Tuesday, 19 March		· ·		
09:30 → 09:40	Welcome Speaker: Antonio D'Addabbo (Istituto Nazionale di Fisica Nu B Welcome.p	⊙ 10m ♀ Room "E. Majorana" cleare)	•		
09:40 → 10:20	Overview of BULLKID-DM Speaker: Marco Vignati (Istituto Nazionale di Fisica Nucleare	③ 40m ♀ Room "E. Majorana" e)			
10:20 → 10:30	Presentation of the Rome group Speaker: Marco Vignati (Istituto Nazionale di Fisica Nucleare	③ 10m 9 Room "E. Majorana "			
10:30 → 10:45	Presentation of the KIT group Speaker: Luis Ardila Perez (Karlsruhe Institute of Techonolog 2024-03-19	③15m ♀ Room "E. Majorana" gy)		14:45 → 15:00	The DANAE Detector: Road Speaker: Angelo Cruciani (Is
10:45 → 11:00	Presentation of the Ferrara Group Speaker: Andrea Mazzolari (Istituto Nazionale di Fisica Nucl	③ 15m ♀ Room "E. Majorana" eare)	2 -	15:00 → 15:15	Electronics study Speaker: Mario De Lucia
11:00 → 11:30	Coffee	③ 30m ♀ Room "E. M	lajorana"	15:15 -> 15:45	Dreteture electronico ovete
11:30 → 11:45	Presentation of the UNAM group Speaker : Eric Vazquez Jauregui (Instituto de Física, UNAM)	③15m ♥ Room "E. Majorana"	2 -	15.16 7 15.45	Speaker: Mr Timo Muscheid
11:45 → 12:00	Presentation of the Grenoble group Speaker: Alessandro Monfardini (CNRS Grenoble)	③ 15m 9 Room "E. Majorana"	•	15:45 → 16:00	3"x3 Demonstrator Speaker : Daniele Delicato (Is
12:00 → 12:15	Presentation of the Pisa group Speaker: Donato Nicolo' (Istituto Nazionale di Fisica Nuclear	③ 15m ♀ Room "E. Majorana" e)	2 -	16:00 → 16:15	4" Stack Speaker: Daniele Pasciuto (I
12:15 → 12:30	Sensitivity to WIMP-like Dark Matter (© 15m P Ro Speaker: Matteo Folcarelli (Istituto Nazionale di Fisica Nucle	om "E. Majorana" 📄 Minutes eare)		16:15 → 16:30	Wafer dicing Speaker: Marco Romagnoni
	Sensitivity			16:30 → 16:50	Simulations: DANAE setup i Speaker: Eric Vazquez Jaure
12:30 → 12:50	Review of competitors Speaker: Marco Vignati (Istituto Nazionale di Fisica Nucleare	③ 20m ♥ Room "E. Majorana" e)	•	16:50 → 17:10	Simulations: BULLKID-DM s Speaker: Eric Vazquez Jaure
12:50 → 13:10	CEvNS application	◎ 20m ♥ Room "E. Majorana"		17:10 → 17:40	
	Speaker: Giorgio Del Castello (Istituto Nazionale di Fisica Nu	icleare)		17:40 → 19:00	PI council
13:30 → 14:45	Lunch	③ 1h 15m ♀ Room "E. M	1ajorana"	20:00 → 22:30	

Social dinner				🕚 2h 3	80m
		9 Room	"E. Majoran	a" 📝	Ŧ
Coffee	C) 30m	• Room "E.	Majora	ana"
setup at Gran Sasso regui (Instituto de Física, UNAM)	() 20m	9 Room	"E. Majorana	a" 📝	Ŧ
in Rome regui (Instituto de Física, UNAM)	(C) 20m	9 Room	"E. Majorana	a" 📝	Ŧ
i (Istituto Nazionale di Fisica Nuc	(§ 15m leare)	♥ Room	"E. Majorana	a" 📝	*
(Istituto Nazionale di Fisica Nucle	(© 15m are)	9 Room	"E. Majorana	a" 🕜	•
Istituto Nazionale di Fisica Nuclea	(§ 15m are)	9 Room	"E. Majorana	a" 📝	Ŧ
em d (KIT)	(§ 30m	♥ Room	"E. Majoran	a" 👔	•
	🕑 15m	♥ Room	"E. Majorana	a" 🕜	•
Imap stituto Nazionale di Fisica Nuclea	③ 15m re)	🕈 Room	"E. Majorana	a" 🕜	*

	WEDNESDAY, 20 MARCH				
09:30 → 09:50	Tests on BGO Speaker: Matteo del Gallo Roccagiovine BGO-LNGS	3 20m	♥ Room	"E. Majorana"	•
09:50 → 10:10	KID R&D Speaker: Daniele Delicato (Istituto Nazionale di Fisica Nuclea	() 20m are)	♥ Room	"E. Majorana"	•
10:10 → 10:25	LNGS Cryo facility Speaker: Antonio D'Addabbo (Istituto Nazionale di Fisica Nuc	(§ 15m cleare)	Room Room	"E. Majorana"	•
10:25 → 10:40	Rome Cryolab Speaker: Angelo Cruciani (Istituto Nazionale di Fisica Nuclea	(© 15m re)	♥ Room	"E. Majorana"	•
10:40 → 10:55	Cryogenics in Pisa Speaker: Giovanni Signorelli	(§ 15m	Room Room	"E. Majorana"	
11:00 → 11:30	Coffee	C) 30m	Room "E. Ma	ajorana"
11:30 → 12:00	CDR Speaker: Angelo Cruciani (Istituto Nazionale di Fisica Nuclea	() 30m re)	♥ Room	"E. Majorana"	•
12:00 → 13:00	Round table: Workpackages and milestones definition Speakers: Angelo Cruciani (Istituto Nazionale di Fisica Nucle Nazionale di Fisica Nucleare)	③ 1h are), Mar	Room Room	"E. Majorana" (Istituto	•
13:00 → 13:20	Concluding remarks	🕓 20m	9 Room	"E. Majorana"	•
13:30 → 14:30	Lunch break		() 1h	• Room "E. Ma	ajorana"
14:30 → 17:30	Visit to underground labs		🕚 3h	• Room "E. Ma	ajorana"

Backup slides