A new measurement of the Kaonic Helium L-lines with SIDDHARTA-2 at DAΦNE

INFN

FRANCESCO CLOZZA XXI LNF Spring School "Bruno Touschek" in Nuclear, Subnuclear and Astroparticle Physics

Physics of light kaonic atoms

- Predicted in the '40s (Tomonaga and Araki, 1940; Conversi, Pancini, and Piccioni 1945, 1947)
- Exotic Atoms: atoms in which a negatively charged particle replaces an electron in the atomic orbits
- Study of hadronic atoms to probe the strong interaction between the hadron and the nucleus at vanishing relative energy
- Kaonic atoms offers a unique way of directly probing the non-perturbative QCD with strangeness

Physics of light kaonic atoms

A new measurement of the Kaonic Helium L-series with SIDDHARTA-2 at DAONE — Francesco Clozza

 $n \sim \sqrt{\frac{\mu}{m_e}} n_e$

$n \sim 28 \, \text{K-}^4 \text{He} \, \& \, \text{K-D}$ $n \sim 25 \, \text{K-H}$ μ system's reduced mass

SCIENTIFIC GOAL: measure the emitted X-Rays to extract

- Kaonic deuterium $2p \rightarrow 1s$ transition exhibits a drastically low X-ray yield
- Challenging measure
- An accurate and thorough characterisation and optimisation of the experimental apparatus is mandatory:
 - 1. Characterisation of the Silicon Drift Detectorts (SDDs) used to perform Xray spectroscopy
 - 2. Optimisation of the degrader to maximise the number of kaons stopped
- Kaonic helium-4 $3d \rightarrow 2p (L_{\alpha})$ transition exhibits an X-ray yield ~ 100 greater
- Best candidate to fulfil this purpose

Kaonic Helium Puzzle

- Need of more accurate measurements to investigate any small shift
- The characterisation campaign of the new SIDDHARTA-2 experimental apparatus is a unique opportunity to perform a new and more accurate measurement of the kaonic helium-4 $3d \rightarrow 2p$ transition

Experimental Setup

- SIDDHARTA-2 experiment installed on the Interaction Point (IP) of $DA\Phi NE$
- e^+e^- collider working at a center of mass energy of the ϕ meson mass (1.02 GeV/c^2)
- Decay to K^+K^- pairs with a BR of 48.9%
- Kaon momentum 127MeV/c
- Not (much) relativistic $\beta \sim 0.25$, $\beta \gamma \sim 0.26$

A new measurement of the Kaonic Helium L-series with SIDDHARTA-2 at DAØNE — Francesco Clozza

Experimental Setup

A new measurement of the Kaonic Helium L-series with SIDDHARTA-2 at DAØNE — Francesco Clozza

Final SIDDHARTA-2 apparatus installed in $\mathsf{DA}\Phi\mathsf{NE}$ in September 2022

Experimental Setup

- Beam pipe
- Cylindrical vacuum chamber
- Cryogenic target cell
- Kaon trigger
- 384 X-Ray detectors (SDDs)
- Mylar degrader
- Luminosity monitor
- Veto Systems

Experimental Setup: kaon trigger

- Pair of plastic scintillators above and below the IP
- Read by two PMTs each
- Selection of kaons as coincidence between the scintillators
- Suppression of asynchronous background related to particle losses from e^+e^- beams due to Touschek effect
- MIPs-induced triggers suppressed with Time-of-Flight TOF signatures

A new measurement of the Kaonic Helium L-series with SIDDHARTA-2 at DAONE — Francesco Clozza

Experimental Setup: SDDs

- SDD cells: 8x8mm² active area
- 450µm thick silicon bulk: it allows a ~100% detection efficiency for 5-12keV X-rays $(\sim 7 \text{keV region of interest for})$ kaonic deuterium)
- SDD cells packed in 2x4 array (total active area of 5.12 cm²)
- Silicon wafer glued on alumina ceramic carrier

A new measurement of the Kaonic Helium L-series with SIDDHARTA-2 at DAONE — Francesco Clozza

Experimental Setup: SDDs calibration

A new measurement of the Kaonic Helium L-series with SIDDHARTA-2 at DAONE — Francesco Clozza

final measurement ($\varepsilon_{2p}, \Gamma_{2p}$)

Data selection

- Inclusive spectrum for a kaolic helium-4 measurement at a density of 1.88 g/L and a total integrated luminosity of $\sim 31 \, \text{pb}^{-1}$ made between April and May 2023
- High background hinders the observation of the kaonic helium lines ullet

A new measurement of the Kaonic Helium L-series with SIDDHARTA-2 at DAONE — Francesco Clozza

Data selection: kaon trigger

- Kaon trigger (KT) used to:
 - 1. suppress the asynchronous background due to beam losses, 5µs time window in coincidence with a KT signal
 - 2. reduce MIPs-induced triggers with TOF signatures

A new measurement of the Kaonic Helium L-series with SIDDHARTA-2 at DAØNE — Francesco Clozza

- Events/(17[ps] x 17[ps])

Data selection: drift time

- Time difference between KT signal and X-ray detection
- Events inside the lines are related to hits on the SDDs in coincidence with the KT signals
- Time resolution extracted: FWHM = (507.60 ± 0.47) ns

A new measurement of the Kaonic Helium L-series with SIDDHARTA-2 at DAPANE — Francesco Clozza

Data selection: rejection factor

A new measurement of the Kaonic Helium L-series with SIDDHARTA-2 at DAØNE — Francesco Clozza

Kaonic Helium L-series measurement

A new measurement of the Kaonic Helium L-series with SIDDHARTA-2 at DAPANE — Francesco Clozza

Kaonic Helium L-series measurement

$$\varepsilon_{2p} = 2.0 \pm 1.2$$
(stat) ± 1.5 (syst) eV

This work, with the **new SIDDHARTA-2 apparatus**

Vs

SIDDHARTA measurement (2009)

 $\varepsilon_{2p} = 0 \pm 6(\text{stat}) \pm 2(\text{syst}) \,\text{eV}$

Enhancement of almost a **factor 6** in the statistical error

A new measurement of the Kaonic Helium L-series with SIDDHARTA-2 at DAPANE — Francesco Clozza

Bazzi, M. et al. Kaonic helium-4 x-ray measurement in SIDDHARTA. Physics Letters B 681, 310-314 (2009).

- The SIDDHARTA-2 experiment will perform the first ever measurement of the shift and width induced by the strong interaction on the 1s level of Kaonic Deuterium
- The performance of the new apparatus make it the strongest candidate to perform the kaonic deuterium measurement
- The new measurement of the Kaonic Helium $3d \rightarrow 2p$ transition is consistent with the hypothesis of null shift and width of the 2p energy level
- This work delivered a new and more accurate measurement of the $3d \rightarrow 2p$ transition of kaonic helium-4
- This result has been published, DOI: <u>https://doi.org/10.3390/</u> condmat9010016

A new measurement of the Kaonic Helium L-series with SIDDHARTA-2 at DAONE — Francesco Clozza

Thank you for vourattention

FRANCESCO CLOZZA XXI LNF Spring School "Bruno Touschek" in Nuclear, Subnuclear and Astroparticle Physics

INFŃ

Istituto Nazionale di Fisica Nucleare Laboratori Nazionali di Frascati

- Detected X-Rays carry information about the (strong) interaction
- Broadening (Γ) and shift (\mathcal{E}) of the energy level induced by the strong interaction
- Scientific goal: performing the first measurement of kaonic deuterium X-ray transition to the fundamental level to extract \mathcal{E}_{1s} and Γ_{1s}

A new measurement of the Kaonic Helium L-series with SIDDHARTA-2 at DAONE — Francesco Clozza

• Antikaon-nucleon scattering lengths $(a_{\bar{K}N})$ related to these observables

$$e_{1s}^{H} + \frac{i}{2}\Gamma_{1s}^{H} = 2\alpha^{3}\mu^{2}a_{\bar{K}p} \left[1 - 2\alpha\mu(\ln\alpha - 1)a_{\bar{K}p} + \dots\right]$$

fine structure constant reduced mass
$$\lim_{k \to 0} \sigma_{e} = 4\pi a^{2}$$

elastic cross section

- Combined analysis of kaonic hydrogen and kaonic deuterium to extract the isospin-dependent antikaon-nucleon scattering lengths
- Kaonic hydrogen measured by the SIDDHARTA experiment in 2009
- Lack of a kaonic deuterium measurement

Meißner, U.-G., Raha, U. & Rusetsky, A. Spectrum and decays of kaonic hydrogen. The European Physical Journal C-Particles and Fields 35. 349–357 (2004).

- Theoretical models in good agreement K^-p low momentum scattering amplitude
- Theoretical models for the $K^{-}n$ low momentum scattering amplitude highly spread

A new measurement of the Kaonic Helium L-series with SIDDHARTA-2 at DAPANE — Francesco Clozza

Óbertová, J., Friedman, E., Mareš, J. & Ramos, À. On Knuclear interaction, K-nuclear quasibound states and Katoms. In EPJ Web of Conferences, vol. 271, 07003 (EDP Sciences, 2022).

The Kp scattering length is connected to the KN isospin-dependent scattering lengths a_I , with I = (0, 1), via the relation:

$$a_{\bar{K}p} = \frac{1}{2} \left(a_0 + a_1 \right) \,.$$

The individual isoscalar (a_0) and isovector (a_1) scattering lengths can be obtained by measuring kaonic deuterium, which provides information on a different combination of a_0 and a_1 :

$$a_{\bar{K}n} = a_1 \,,$$

$$a_{\bar{K}d} = \frac{4 \left[m_N + m_K \right]}{2m_N + m_K} Q + C \,,$$

where:

$$Q = \frac{1}{2} \left[a_{\bar{K}p} + a_{\bar{K}n} \right] = \frac{1}{4} \left[a_0 + 3a_1 \right] \,.$$

A new measurement of the Kaonic Helium L-series with SIDDHARTA-2 at DAØNE - Francesco Clozza

(1.8)

(1.9)

(1.10)

(1.11)

$d\sigma = f(\theta) ^2 d\sigma.$	(123,4)
------------------------------------	---------

Questa grandezza ha le dimensioni di un'area e si chiama sezione efficace (o semplicemente sezione) di diffusione entro l'angolo solido do. Ponendo $d0 = 2\pi \sin \theta \, d\theta$, otteniamo la sezione d'urto

> $d\sigma = 2\pi \operatorname{sen} \theta | f(\theta) |^2 d\theta$ (123, 5)

per la diffusione nell'intervallo di angoli fra $\theta \in \theta + d\theta$.

In seguito, sarà opportuno usare anche le ampiezze di diffusione parziali f_l , che determineremo come i coefficienti dello sviluppo

$$f(\theta) = \sum_{l} (2l+1) f_{l} P_{l} (\cos \theta).$$
 (123,14)

e noi arriviamo alla conclusione che nel caso limite di energie piccole si ha

 $f_1 \sim k^{2l}$.

Ìn tal modo, tutte le ampiezze parziali con $l \neq 0$ risultano piccole rispetto all'ampiezza di diffusione con l = 0 (o, come si dice, di diffusione s). Trascurando le ampiezze parziali, abbiamo per l'ampiezza totale

$$f(\theta) \approx f_0 = \frac{\delta_0}{k} = \frac{c_2}{c_1} \equiv -\alpha$$

cosicché $d\sigma = \alpha^2 do$, e la sezione totale è $\sigma = 4\pi\alpha^2$

Landau, L. D. & Lifshitz, E. M. Quantum Mechanics: non-relativistic theory, vol. 3 (Elsevier, 2013).

A new measurement of the Kaonic Helium L-series with SIDDHARTA-2 at DAONE — Francesco Clozza

(132, 8)

(132, 9)α,

(132, 10)

- Cylindrical volume (144mm diameter x 125mm height)
- Side walls made of two layers of 75µm kapton ($C_{22}H_{10}N_2O_5$)
- Reinforcement structure of high purity aluminum
- 125µm thick kapton entrance window
- 100µm thick titanium top roof

Gaseous target

 Target cell kept between 20-30K with a closed-cycle helium refrigeration system

- High thermal conductive block: can be cooled down to (100÷150)K
- Preamplifier system in collaboration with Politecnico di Milano (PoliMi)
- CUBE: Metal-oxide semiconductor integrated charge sensing amplifier
- Small capacitance: lower rise time and independent from the detector's active area
- Large area detectors with a 500ns drift time at 140K

- e-h pairs separated through a reverse polarization field ("vertical drift")
- Second electric field superposed to transport the charges towards a collection anode ("horizontal drift")
- "Gutter-like" field configuration is achieved for the charge collection

A new measurement of the Kaonic Helium L-series with SIDDHARTA-2 at DAØNE — Francesco Clozza

Vacuum Chamber

- The energy response function of the SDD exhibits two main contributions:
 - 1. A Gaussian curve for every peak
 - 2. A Tail function accounting for the low energy component due to incomplete charge collection and e-h recombination
- A linear background has been taken into account
- A Peakfinder has been implemented using ROOT C++

A new measurement of the Kaonic Helium L-series with SIDDHARTA-2 at DAONE — Francesco Clozza

A new measurement of the Kaonic Helium L-series with SIDDHARTA-2 at DAØNE — Francesco Clozza

- Calibration of the SDDs system performed with two X-Ray tubes and a 55 Fe source
- 384 SDDs divided into 6 buses (64 SDDs each), 321 working SDDs analysed
- Sum of all the calibrated spectra to extract the resolution of the apparatus and the calibration error **Total Counts in SDDs**

A new measurement of the Kaonic Helium L-series with SIDDHARTA-2 at DAPANE — Francesco Clozza

Global Fit

K-series transitions

Step background

A new measurement of the Kaonic Helium L-series with SIDDHARTA-2 at DAΦNE — Francesco Clozza

- Boost of the kaons towards the center of the collider
- Step-wise mylar degrader to obtain a uniform stopping distribution inside the target cell
- Eight mylar strips with thickness varying from 100µm-200µm
- Overall thickness ranges from 200µm-950µm
- MC simulations + Experimental fine tuning to optimise the shape and thickness

- Six different degrader thickness: 350µm, 400µm, 475µm, 550µm, 625µm and 700µm in the middle
- Number of kaonic helium-4 L_{α} $(3d \rightarrow 2p)$ events measured, normalised to the integrated luminosity of each data taking
- Optimal thickness of ~516µm
- 150µm-160µm difference results in a reduction of a factor ~ 3 in the X-Ray yield
- Crucial step in the view of the kaonic deuterium measurement

$\varepsilon_{2p} \ (\mathrm{eV})$	Ref.
-41 ± 33	Wiegand $et \ al. \ [19]$
$-35{\pm}12$	Batty $et \ al. \ [20]$
-50 ± 12	Baird $et \ al. \ [21]$
-43 ± 8	Average of the above $[21, 22]$
$+2\pm2(\text{stat})\pm2(\text{syst})$	Okada $et \ al. \ [25]$
$0\pm 6(\text{stat})\pm 2(\text{syst})$	Bazzi <i>et al.</i> [26]

Table 1.2. Summary of the shift of the $3d \rightarrow 2p$ kaonic helium transition.

- [19] Wiegand, C. E. & Pehl, R. H. Measurement of kaonic X-rays from He-4. Physical Review Letters 27, 1410 (1971).
- [20] Batty, C. et al. Measurement of kaonic and pionic X-rays from liquid helium. Nuclear Physics A **326**, 455–462 (1979).
- [21] Baird, S. et al. Measurements on exotic atoms of helium. Nuclear Physics A **392**, 297–310 (1983).
- [22] Batty, C. Light kaonic and antiprotonic atoms. Nuclear Physics A 508, 89–98 (1990).

- [25] Okada, S. et al. Precision measurement of the $3d \rightarrow 2p$ x-ray energy in kaonic 4He. *Physics Letters B* **653**, 387–391 (2007).
- Bazzi, M. et al. Kaonic helium-4 x-ray measurement in SIDDHARTA. Physics |26|Letters B 681, 310–314 (2009).

A new measurement of the Kaonic Helium L-series with SIDDHARTA-2 at DAØNE — Francesco Clozza

QED predicted values

Transition	Energy $[eV]$	Transition	Energy $[eV]$
$ ext{K-}^{4} ext{He} ext{M}_{\delta}$	4213.3	${\rm Ti}\;{\rm K}_{\alpha}$	4500.9
$\text{K-}^{4}\text{He} M_{\eta}$	4696.6	${\rm Ti}\;{\rm K}_\beta$	4932
$\text{K-}^{4}\text{He }\text{L}_{\alpha}$	6463.3	K-C $6 \rightarrow 5$	5544.9
K- ⁴ He L_{β}	8721.6	K-O $7 \rightarrow 6$	6006.8
K- ⁴ He L _{γ}	9766.6	K-N $6\to 5$	7595.4
K- ⁴ He L _{δ}	10334.3	K-C $7 \rightarrow 5$	8885.8
$\text{K-}^{4}\text{He } L_{\epsilon}$	10676.5	K-O $6 \rightarrow 5$	9968.7
$ ext{K-}^{4} ext{He } ext{L}_{\zeta}$	10898.7	K-C $5 \rightarrow 4$	10216.5
$ ext{K-}^{4} ext{He } ext{L}_{\eta}$	11050.9	-	-
$\text{K-}^{4}\text{He L}_{\theta}$	11159.9	-	-

Measured values

Transition	Energy
K- ⁴ He M_{δ}	4192 =
${\rm Ti}\;{\rm K}_{\alpha}$	4501.7 :
K- ⁴ He M_{η}	4710 =
${\rm Ti}\;{\rm K}_\beta$	4926 =
K-C $6 \rightarrow 5$	5546.5 :
K-O $7 \rightarrow 6$	<u>6025</u> =
$ ext{K-}^{4} ext{He } L_{\alpha}$	6461.3
K-N $6\to 5$	7578 =
K-C $7 \rightarrow 5$	8917 =
K-O $6 \rightarrow 5$	9978 =
K-C $5 \rightarrow 4$	10212.6

A new measurement of the Kaonic Helium L-series with SIDDHARTA-2 at DAΦNE — Francesco Clozza

y [eV] ± 16 ± 6.1 ± 22 ± 18 ± 8.0 ± 17 ± 1.2 ± 39 ± 27 ± 11 ± 6.6

