

Searching for Exclusive Leptoquarks with the Nambu-Jona-Lasinio Composite Model at the LHC and HL-LHC

S. Ajmal, J. T. Gaglione, F. Romeo, A. Gurrola, O.Panella, M. Presilla, H. Sun, and S. S. Xue

8th Young Researchers Workshop on "Physics Challenges in the LHC Era"

Content

Introduction

NJL Composite Model

Signal and Background MC generation

Search Mechanism Strategy

Sensitivity results

Summary

Introduction

- ✤ The Standard Model (SM) is presently the benchmark theory.
- Unexplained phenomena (hierarchy problem, flavor problem, neutrino masses and mixing, etc...) forces us to go beyond-the-SM (BSM)
- Leptoquarks serve as a promising mediator for explaining anomalies in the BSM context.
 - UV completion of the theory
 - *Anomalies involve leptons and quarks. \Rightarrow Favored BSM: Leptoquark models

Numerous models have been proposed which includes LQ's

♦ GUT SU(5), Pati-Salam SU(4), RPV SUSY...

Exploring LQ's in different model and with some New production modes

Juark

Leptoquarks at High Energies

- * ATLAS and CMS collaborations also explore Lepton flavor universality violation at the LHC.
- CMS observed excess with a significance of 3.4 standard deviations above the standard model expectation in the data in the Search for a third-generation leptoquark coupling to a τ lepton and a b quark <u>CMS-PAS-EXO-19-016</u>

4

Composite NJL Model

NJL Model (Y. Nambu and G. Jona-Lasinio) (1961)

Nambu-Jona-Lasinio (NJL) Four Fermion Interactions (SheSheng Xue) (2017)

- NJL-type interactions simplify non-perturbative aspects of strong interactions in Quantum Field Theory.
- Provides understanding of chiral symmetry breaking and hadron mass generation.
- Original model features a nonrenormalizable four-fermion interaction term in the Lagrangian.
- ★ Adopted this because Well-defined QFT for SM Lagrangian requires a natural regularization (UV cutoff Λ_{cut}) where $\Lambda_{cut} \rightarrow 10^{19} \text{ GeV}$ (planck scale) or 10^{16} GeV (GUT scale)

Implications for Beyond Standard Model Operators:

$$\sum_{f=1,2,3} G_{cut} [\overline{\psi_L}^f \psi_R^f \overline{\psi_R}^f \psi_L^f]_{Q_i=0,-1,\frac{2}{3},-\frac{1}{3}} \quad where \ G_{cut} \propto \Lambda_{cut}^{-2}$$

Preserves not only the SM gauge symmetries and global fermion family symmetries but also the global symmetries for fermion-number conservations

IR-stable and UV-stable fixed points

\bullet By Analyzing the behavior of the β-function in terms of the four-fermion coupling (G).

IR Stable Fixed Point

The electroweak scale ($v \approx 246 GeV$) where the low-energy SM is realized.

UV Stable Fixed Point

In this UV domain at high energies, it realizes an effective theory of composite bosons and fermions composed by SM elementary fermions, also preserves SM symmetries.

- ♦ $G_c \rightarrow$ weak critical coupling of NJL dynamics
- ♦ $G_{crit} \rightarrow$ a potential UV-stable fixed point
- Section "I" (Positive Increase)
- Section "II" (Positive Decrease)
- Section "III" (Negative/ UV-Domain)

Spectrum of Composite Particles

- Out of Four Fermion Interactions, we can delineate two primary categories, each of which is subsequently subdivided.
- Colorless Composite Particles are gauge invariant under the Electroweak part of SM i.e. $SU(2)_L \times U(1)_Y$
- In total we have 8 composite Bosons, 16 Right-handed and 16 Left-handed Composite Fermions.

Composite Leptoquarks

- There are four type of Leptoquarks, their CI Lagrangians are given.
- Table Below Contains the list of Composite Bosons LQ and their respective Quantum numbers.
- Interactions implemented with 5 Flavour scheme in Feynrules[<u>Ref</u>]
- Universal Feynrules output (UFO) for the use Monte Carlo generator: MadGraph

$$egin{aligned} \mathcal{L}_{ ext{CI}}^{\Pi_a^{-5/3}} &= g_{ ext{Y}}(ar{e}_R u_{La}) \Pi_a^{-5/3} + ext{h.c.}, \ \mathcal{L}_{ ext{CI}}^{\Pi_a^{1/3}} &= g_{ ext{Y}}(ar{
u}_R^e d_{La}) \Pi_a^{1/3} + ext{h.c.}, \ \mathcal{L}_{ ext{CI}}^{\Pi_{ ext{ua}}^{-2/3}} &= g_{ ext{Y}}(ar{
u}_R^e u_{La}) \Pi_{u_a}^{-2/3} + ext{h.c.}, \ \mathcal{L}_{ ext{CI}}^{\Pi_{ ext{da}}^{-2/3}} &= g_{ ext{Y}}(ar{e}_R d_{La}) \Pi_{d_a}^{-2/3} + ext{h.c.}, \ &\text{where } g_{ ext{Y}} &= (F_{\Pi}/\Lambda)^2 \end{aligned}$$

	00100100100	1010180 $4i$ 1 $13L$	$\Sigma \circ L(\mathbf{-}) \circ \mathrm{Isospin} \circ 3L \circ$	<i>I</i> (<i>I</i>) <i>IIJ</i> P <i>G G G G G G G G G G</i>
$\Pi_a^{+5/3}$	$(ar{e}_R u_{La})$	+5/3	1/2	7/6
$\Pi_a^{-1/3}$	$(ar{ u}_R^e d_{La})$	-1/3	-1/2	1/6
$\Pi^{2/3}_{u_a}$	$(ar{ u}_R^e u_{La})$	2/3	1/2	1/6
$\Pi_{d_a}^{2/3}$	$(ar{e}_R d_{La})$	2/3	-1/2	7/6

LO Composite bosons Π^Q constituents charge $Q_i = Y + t_{2r}^i$ $SU_L(2)$ 3-isospin t_{2r}^i $U_V(1)$ -hypercharge Y

Production modes

Lepton vs Photon Initiated Processes

♦ $pp \rightarrow e^+ j$ (lepton initiated process) Lepton in proton PDF, LUXlep

- ♦ $pp \rightarrow e^+e^-J$ (photon initiated process) LUX PDF
- Comparison of $pp \rightarrow e^+e^-J$ elastic + inelastic part with $pp \rightarrow e^+j$
- LUXPDF doesn't gives separate contribution
- Chose different partonic distribution function
- i.e., MRST2004qed_proton with ID 20463

Implementation in Madgraph

Coupling $g_{\gamma} = 1$ and mass range is 0 - 5 TeV

New Production Modes

- $\clubsuit p p$ collisions containing quarks and gluon
- $\clubsuit p p$ collisions also contain radiating Photons
- For Monte Carlo Signal Production
 - $p p > \mu^+ \mu^- (0 3 jets)$
 - $p p > \mu^+ \mu^- j$, $p = \gamma$, quarks
- This includes all possible contributions.

Cross Section studies (2nd Gen)

- Cross-section vs mass plots for comparison for different processes for left plot coupling equals 1, right plot coupling equals 2.5
- Plot contains
 - Pair, single and off-shell production for second generation
 - $pp \rightarrow \mu^+ \mu^- 0123j$
 - $pp \rightarrow \mu^+ \mu^- J$ (p contains photon, , Inelastic contribution)

Jet Merging

We employ the matrix element-parton shower matching technique known as <u>MLM merging</u>, first presented by <u>Michelangelo L. Mangano</u>, <u>Mauro Moretti</u> and others in 2007 (<u>https://iopscience.iop.org/article/10.1088/1126-</u> 6708/2007/01/013)

✤ We adopt a matching scale of Qcut set at 30 GeV.

The final jets after parton-shower evolution and jet clustering are matched to the original partons. The event is accepted if a reasonable match is found, and rejected if not.

Search Strategy

- ★ The signal consists of $p \ p > l^+l^-(0-3 \ jets)$ and $p \ p > l^+l^-j$, $p = \gamma$, quarks
- Parameter space sampling
 - 1000 to 30000 GeV for mass points
 - $g_y = \left(\frac{F_{\Pi}}{\Lambda}\right)^2 = 0.5, 1.0, 1.5, 2.0, 2.5$
- To simulate the detector response, we utilize the <u>Delphes-3.5.0</u> framework
- Backgrounds are selected: Single and Pair top production, WJ, VV and Drell-Yan.
- Event selection criteria include two leptons with pT > 20 GeV, |η| < 2.5, and invariant lepton pair mass > 120 GeV, missing transverse energy < 50 GeV, and no b quark-originating jets.</p>
- Jets require pT > 20 GeV, pseudorapidity |η| < 5 and spatial separation from leptons (ΔR > 0.4)

$$\Delta R = \sqrt{(\Delta \eta)^2 + (\Delta \varphi)^2}$$

Events are normalized

$$n = rac{\sigma \mathcal{L}_{int} N_{sel}}{N_{gen}}$$
 where \mathcal{L}_{int} = 300 fb^{-1}

Histograms (
$$\mu c$$
)

Discriminating varaibles

5/13/24

• $\chi = e^{\eta_1 - \eta_2}$ and η_1, η_2 are the pseudorapidities of the two *leptons*

♦ S_T is defined as the sum of the scalar p_T of the leptons and jets.

Sensitivity Results

- Significance is computed via <u>CMS Combine Tool</u> by feeding the histograms of the discriminating variables for $pp + \gamma p$
- Expected significance by profile-binned likelihood statistical test

 $-2\ln\left(\frac{\mathcal{L}(data|r=0,\theta_0)}{\mathcal{L}(data|r=\hat{r},\theta_0)}\right)$

- Systematic uncertainties have been added in terms of nuisance parameters for $r = \hat{r}$ and r = 0
- ✤ COM energy is 13 TeV and Luminosity is $300fb^{-1}$ and then scaled to $140fb^{-1}$ and $3000fb^{-1}$

Uncertainty Source	Signal (%)	$\mathbf{Backgrounds}(\%)$
PDF	2.8	3.0
Pileup	0.2	1.0
Jet Energy Resolution	0.1	1.7
Lepton Energy Resolution	0.2	5.3
Jet Energy Scale	0.5	0.9
Lepton Energy Scale	1.5	2.5
Leptonic Reconstruction efficiency	3.0	3.0
Leptonic Identification efficiency	1.3	0.3
Trigger	1.1	1.4

Followed the same prescriptions used in the published LQ searches <u>https://arxiv.org/abs/1808.05082</u>

Sensitivity Results(2nd Gen) for $300 fb^{-1}$

Signal significance in the plane of the coupling μc and the mass of the LQ using $pp + \gamma p$ events at $\sqrt{s} = 13 \ TeV$ expected for $300 \ fb^{-1}$. We showed 5 and 2 σ levels, while the vertical lines show the most recent exclusion limits results at 95% CL from a search for LQs from

ATLAS (black dashed) upto 1.8 TeV

CMS (violet plain) upto 1.9 TeV

Sensitivity Results(2nd Gen) for $3000 fb^{-1}$

Signal significance in the plane of the coupling μc and the mass of the LQ using $pp + \gamma p$ events at $\sqrt{s} = 13 \ TeV$ expected for different luminosity scenarios . We showed 5 and 2 σ levels, while the vertical lines show the most recent exclusion limits results at 95% CL from a search for LQs from

ATLAS (black dashed) upto 2.2 TeV

CMS (violet plain) upto 2.3 TeV

Summary

- For the first time, we have examined the impact on the sensitivity of the search for particles when they are produced in association with additional jets.
- We have found that several New Mechanisms are possible besides the classical pair, single, and Drell-Yan nonresonant LQ generation.
- Explored parameter space parameter to assess its impact on the outcomes
- Projected 2 and 5σ contours for different Luminosities, 3000 fb⁻¹, 300 fb⁻¹, and 140 fb⁻¹. For center-of-mass energy of 13 TeV.
- These findings hold particular relevance within the context of the BSM scenario.
- Work has been already available on arxiv: 2311.18472 [hep-ph]
- The LQ part of the model published on the official website of Feynrules <u>https://feynrules.irmp.ucl.ac.be/wiki/NJLComposite</u>

Thanks for giving me opportunity to speak and for Attention

LHC and Future Colliders

Composite NJL Model

The Effective Four Fermion operators

$$\sum_{i=1,2,3} G_{cut} [\overline{\psi_L}^f \psi_R^f \overline{\psi_R}^f \psi_L^f]_{Q_i=0,-1,\frac{2}{3},-\frac{1}{3}} \text{ where } G_{cut} \propto \Lambda_{cut}^{-2}$$

- Preserves not only the SM gauge symmetries and global fermion family symmetries but also the global symmetries for fermion-number conservations
- ↔ Effective Lagrangian at Cutoff Λ_{cut} :

Massless SM fermion fields interact as gauge eigenstates of SM gauge symmetries.

♦ Unique four-fermion coupling G_{cut} establishes exact global fermion-family $U_L(3) \times U_R(3)$ chiral symmetries.

Converting gauge to mass eigenstates using a unitary matrix

$$\psi_L^f \to \mathcal{U}_L^f \psi_L^f; \qquad \qquad \psi_R^f \to \mathcal{U}_R^f \psi_R^f; \qquad \qquad \mathcal{U}_{L,R}^f \in \mathcal{U}_{L,R}^f(3)$$

Implementation in Feynrules

- FeynRules is Mathematica Package
- Composite Fermions Interactions were implemented <u>before</u> in article
- Eur. Phys. J. C (2020) 80:309 by R. Leonardi, O. Panella,

S.-S. Xue and others

- Extended the Implementation to
 - Composite Boson quark-quark
 - Composite Boson Lepton-quark
- Contact Interactions and Gauge interactions are implemented for both. Next to leading order Interactions are there for Composite bosons
- ✤ 5 Flavour scheme is implemented.
- Universal Feynrules output (UFO) for the use Monte Carlo generator: MadGraph

	<pre>Lcf := Lstarkin + HC[Llepqua + Llepqua1 + Llepqua2 + Llepqua3] + Llepqua + Llepqua1 + Llepqua2 + Llepqua3;</pre>			
	CheckHermiticity[Lcf, FlavorExpand → True];			
	<pre>vertices = FeynmanRules[Lcf];</pre>			
	<pre>FeynmanGauge = False;</pre>			
I	GetKineticTerms[L	arkin]		
	GetMassTerms[Lsta	cin]		
	GetInteractionTer	[Lstarkin]		
	GetInteractionTer	[Llepqua + Llepqua1 + Llepqua2 + Llepqua3]		
	WriteUF0[LGauge,	ermions, LHiggs, LYukawa, LGhost, Lcf, FlavorExpand → True];		

Data_Cards_LQ_Prodcution	coupling_update	last month
FR_NJL_3.2	version3.2	6 months ago
FR_NJL_3.3	update_of_July	3 months ago
FR_NJL_3.3LQ	update_september2022	last month
HN_FeynRules_model	update	9 months ago
NJL-Model_version_3.1	update_feb2022	8 months ago
Old version of model	updates	4 months ago
DS_Store		4 months ago
C README.md	september_update	last month

https://github.com/mpresill/compositeNJL

Comparison to Other Models

♦ LQ part of the implementation is compared with well-known LQ model in CMS <u>LQ UFO</u> or $\tilde{R}_2 = (3, 2, 1/6)$

Process	Xsec in Composite NJL $model(pb)$	Xsec in LQ-UFO $model(pb)$
$pp \rightarrow LQLQ$	$0.005568 \pm 4.9 imes 10^{-06}$	$0.005561 \pm 4.92 \times 10^{-06}$
$pp \rightarrow eLQ$	$0.0369 \pm 2.9 \times 10^{-05}$	$0.0369 \pm 2.9 imes 10^{-05}$
$pp \rightarrow ee$	0.1294 ± 0.0001	0.1294 ± 0.00014

For Single pair and t channel production cross-section comparisons for LQ mass set to 1 TeV and coupling set to 1. Used (electron and down quark) for both models.

Comparison to Other Models

- ★ Comparative analysis broadened to encompass e-d and μ-s couplings for t-channel production ($pp \rightarrow l^+ l^-$).
- Varying couplings (1 for 1st generation, 1.5 for 2nd generation) over a mass range from 100 to 2500 GeV.
- Cross-sections obtained using our implemented model consistent within a 1% margin with LQ-UFO model.
- The LQ part of the model published on the official website of Feynrules

https://feynrules.irmp.ucl.ac.be/wiki/NJLComposite

- The matching scale is adjusted at 30 GeV based on the specific variable characterizing the jet production.
- ☆ There is a distinct cut- off between 0- and 1-parton samples in DJR(0 → 1), signifying a critical threshold where the probability of transitioning from zero to one jet experiences a notable change and so on

Sensitivity Results

2 and 5 σ significance contours associated with the coupling of μ c-quark

At luminosity level 300 fb^{-1} (red) and COM at 13 TeV

At varying luminosity levels at 13 TeV, specifically, $3000 fb^{-1}$ (Green), $300 fb^{-1}$ (red), and $140 fb^{-1}$ (Blue).