

STUDY OF THE GAS TARGET DENSITY PROFILE FOR THE REACTION ²²Ne(α , n)²⁵Mg

Established by the European Comr

Marianna Vagnoni SHADES experiment On Behalf of LUNA Collaboration

"Bruno Touschek" LNF Spring School - 13th May 2024

NUCLEAR ASTROPHYSICS GENERAL ASPECTS

Evolutionary Tracks off the Main Sequence

NUCLEAR ASTROPHYSICS THEORETICAL ASPECTS

 $\sigma(E) = \frac{S(E)}{E} \exp(\frac{E}{E})$

 $exp(-2\pi\eta)$

 $Z_1 Z_2 e^2$ $\pi \sqrt{E}$

THE REACTION $^{22}Ne + \alpha \rightarrow ^{25}Mg + n$

 $Q \sim -478 \text{ keV}$

- A series of α -capture produce ²²Ne from ¹⁴Na
- Main neutron source for s-process in AGB stars
- Main neutron source for weak sprocess in He-burning core of RG stars

STATE OF THE ART

BACKGROUND:

Pb, U, Th

UNDERGROUND:

- magnitude less
- magnitude less

BACKGROUND AND LNGS

 Radioactive elements from the decay chain of

• Neutron flux 3 orders of

Cosmic flux 6 orders of

BEAM INDUCED BACKGROUND:

- Reaction with Q > 0
- Discrimination with neutron energy

 α particles

EXPERIMENTAL SET UP GAS TARGET & PUMPING SYSTEM

EXPERIMENTAL SETUP CROSS SECTION MEASUREMENT

$\sigma \propto \Phi_p N N_T \eta \omega(\Omega)$

Number of events:

Measured by the SHADES detector Number of target nuclei N_T :

Gas target characterisation

> LIQUID **SCINTILLATOR EJ309**

³He COUNTER: 3 He(n, p) 3 H

VACUUM HOLE

EXPERIMENTAL SETUP ${}^{20}Ne(p,\gamma){}^{21}Na$

protons

BEAM LINE

protons

TARGET CHAMBER ²⁰Ne gas

DETECTOR LaBr scintillator

ANALYSIS FOR DENSITY PROFILE THE RESONANCE

$^{20}Ne + p \rightarrow ^{21}Na + \gamma$ **O** ~ 2432 keV

• Effect of the intense ion beam into the gas

• Narrow resonance:

$E_R = 1113 \text{ keV}$ $\Gamma = 0.94 \pm 0.04 \text{ eV}$

 The position into the chamber changes as the E_{beam} is varied

ANALYSIS FOR DENSITY PROFILE SETUP AND MEASUREMENTS

SETUP:

- Gas target chamber filled with ²⁰Ne
- Movable table with 14 steps
- LaBr scintillator collimated with Pb

MEASUREMENTS:

- Fix E_{beam} and I_{beam}
- Move the table at step 1 and start a run
- Start a new run for each step until step 14

ANALYSIS FOR DENSITY PROFILE DATA AT FIXED ENERGY AND CURRENT

run_name	E_beam [keV]	E_CM [keV]	real_time [s]	I_beam [uA]	p_target [mbar]	steps [mm]	steps error [r
run_366	1173	1117	373.0	42	4.0	32.5	0.5
run_367	1173	1117	327.0	42	4.0	52.1	0.5
run_368	1173	1117	375.0	42	4.0	72.6	0.5
run_369	1173	1117	80.0	42	4.0	92.0	0.5
run_370	1173	1117	385.0	42	4.0	112.0	0.5
run_371	1173	1117	260.0	42	4.2	131.5	0.5
run_372	1173	1117	183.0	42	4.2	171.4	0.5
run_373	1173	1117	163.0	42	4.2	191.4	0.5
run_374	1173	1117	129.0	42	4.2	211.6	0.5
run_375	1173	1117	196.0	42	4.2	231.5	0.5
run_376	1173	1117	146.0	42	4.2	252.0	0.5
run_377	1173	1117	125.0	42	4.2	271.2	0.5
run_378	1173	1117	102.0	42	4.2	291.3	0.5
run_379	1173	1117	112.0	42	4.2	319.3	0.5

nm]	

ANALYSIS FOR DENSITY PROFILE **ENERGY CALIBRATION**

ANALYSIS FOR DENSITY PROFILE **ROI AND SIGNAL EXTRACTION**

Signal and background

run_381

ANALYSIS FOR DENSITY PROFILE **ONLINE YIELD PROFILE**

 Profile of the experimental yield versus the position into the gas target chamber

$$Y(E_0) = \frac{1}{\epsilon_r} \int_0^{z_{max}} dz \int_{E_0}^0 dz \int_{E_0}^0 dz dz$$

$$f(E, E(z)) = \exp$$

- beam energy
- Construction of the density profile

NEXT STEPS ANALYSIS DENSITY PROFILE

Definition of the yield with fixed beam energy

 $f(E, E(z)) \sigma_{BW} \eta(z) \rho(z) dE$

$$(E - E(z))^{2}$$
$$2[\sigma_{beam}^{2} + \sigma_{straggle}^{2}(E(z))]$$

• Extraction of the density $\rho(z)$ for different

THANK YOU FOR YOUR ATTENTION

BIBLIOGRAPHY

- Aziz, Azni Abdul, et al. "Progress in nuclear astrophysics of east and southeast Asia." AAPPS Bulletin 31 (2021): 1-31.
- Wiescher, M., R. J. DeBoer, and J. Görres. "The resonances in the 22 Ne+ a fusion reactions." The European Physical Journal A 59.1 (2023): 11.
- Hammer, J. W., et al. "22Ne (alpha, n) 25Mg: The Key Neutron Source in Massive Stars." Physical Review Letters 87.20 (2003).
- Görres, J., et al. "The influence of intense ion beams on gas target densities." Nuclear Instruments and Methods 177.2-3 (1980): 295-303.
- Lyons, S., et al. "Determination of Ne 20 (p, γ) Na 21 cross sections from E p= 500– 2000 keV." Physical Review C 97.6 (2018): 065802.

- Rolfs, Claus E., and William S. Rodney. Cauldrons in the cosmos: Nuclear astrophysics. University of Chicago press, 1988.
- Knoll, Glenn F. Radiation detection and measurement. John Wiley & Sons, 2010.
- Iliadis, Christian. Nuclear physics of stars. John Wiley & Sons, 2015.

https://luna.lngs.infn.it/

BACKUP To satisfy your curiosity

Measurement of the cross section from the reaction rate

$$r = N_X N_Y <$$

the Maxwell-Boltzmann distribution

$$\sigma(\mathbf{v}) \mathbf{v} > = \left(\frac{8}{\pi\mu}\right)^{1/2} \frac{1}{(kT)^{3/2}} \int_{0}^{\infty} \sigma(E) E \exp\left(-\frac{E}{kT}\right) dE$$

NUCLEAR ASTROPHYSICS

 $\sigma(\mathbf{v}) \mathbf{v} > (1 + \delta_{XY})$

Non relativistic nuclei composed the stellar gas, so velocities follow

EXPERIMENTAL SETUP BELLOTTI ION BEAM FACILITY

Electrostatic accelerator

TANK IN:

- Source with different gas to generate p-beam, α -beam and 12 C-beam
- Extraction tools
- Focusing lens

TANK OUT:

- Focusing lens
- Central magnet that creates 2 beam lines

ANALYSIS FOR DENSITY PROFILE **BACKGROUND SPECTRUM**

Background spectrum

