

HH combination results from the CMS experiment

Michele Barbieri

SM Higgs potential and self-couplings

- The Higgs self-couplings are still largely unconstrained experimentally
- The couplings provide key information on the shape of the Higgs potential V(H)
- Known $m_{\rm H}$ (~125 GeV), SM predicts $\lambda_3 = m_{\rm H}^2/2v^2$ (~0.13).

- o λ_3 directly accessible through the production of Higgs boson pairs
- o Contributions also come from single Higgs production via NLO EW corrections
- $\circ \quad \lambda_4 \text{ out of reach of the LHC}$

0

SM HH production cross sections at the LHC

			-
$\sigma(pp \rightarrow HH + X)$ [fb] $gg \rightarrow HH (NNLO_{FTapprox})$	\sqrt{s}	13 TeV	
$M_{\rm H} = 125 \text{ GeV}$ PDF4LHC15	ggF HH	$31.05^{+2.2\%}_{-5.0\%}\pm3.0\%$	in fb
10 ²	VBF HH	$1.73^{+0.03\%}_{-0.04\%}\pm2.1\%$	-
10 VBF (N ³ LO) UHH (NLO)	ZHH	$0.363^{+3.4\%}_{-2.7\%}\pm1.9\%$	
1 ZHH (NNLO) tjHH (NLO)	W^+HH	$0.329^{+0.32\%}_{-0.41\%}\pm2.2\%$	-
10 ⁻¹	W^-HH	$0.173^{+1.2\%}_{-1.3\%}\pm2.8\%$	-
-2	t <i>ī</i> HH	$0.775^{+1.5\%}_{-4.3\%}\pm3.2\%$	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	tjHH	$0.0289^{+5.5\%}_{-3.6\%}\pm4.7\%$	-
			-

Gluon-gluon fusion (ggF)

Destructive interference!

Vector Boson fusion (VBF)

HH cross section as a function of k_{λ}

- The HH production allows us to search for new physics $(k_{\lambda} \neq 1)$
- HH cross section is a quadratic function of k_{λ}
- $k_{\lambda} \approx 2.4 \rightarrow \text{max}$ interference of ggF diagrams
- At large | k_{λ} |: softer $m_{\rm HH}$ spectra and larger cross section values
- At medium $|k_{\lambda}|$: hard spectra \rightarrow enhanced boosted signatures

VBF HH cross section: constraint on k_{2V}

- The Higgs self-coupling k_{λ}
- $_{\odot}$ The Higgs-vector-boson coupling (VVH) k_V
- The quartic coupling (VVHH) k_{2V}
 - VBF HH mode provides a unique handle to probe k_{2V}
 - If the VVHH coupling deviates from the SM ($k_{2V} \neq 1$), the cross section can be enhanced
 - In BSM scenarios with modified couplings ($k_{2V} \neq 1, k_V$
 - \neq 1), a significant fraction of signal becomes boosted

decay products merged into large-R jets

Public HH results

HH → bbbb
 Phys. Rev. Lett. 129,081802

HH → bbbb boosted (ggF and VBF)
 Phys. Rev. Lett. 131,041803

O HH → bbtt
 Phys. Rev. Lett. 842 (2023) 137531

OPERATING HH → bbγγ
 <u>JHEP03(2021)257</u>

O HH → bbZZ(4l)
 JHEP06(2023)130

 HH → WWW*W*,WW ττ, ττττ, multileptons
 JHEP07(2023)095

• HH Run2 combination Nature vol. 607, pages 60–68 (2022)

○ **HH** → **WW** $\gamma\gamma$ CMS-PAS-HIG-21-014

O HH → bbWW
 CMS-PAS-HIG-21-005

∨HH → 4b
 CMS-PAS-HIG-22-006

HH decay channels

- The sensitivity to HH production is mainly due to:
 - $HH \rightarrow bbbb$
 - $HH \rightarrow bbVV$
 - $HH \rightarrow bb\tau\tau$
 - $HH \rightarrow bb\gamma\gamma$
- Necessity to find a good compromise in terms of signal/noise ratio
 - Not too high background contamination
 - → Not too low σ·BR

Branching fractions for the decay of an HH pair $(@m_H=125.0 \text{ GeV}/c^2)$

HH→bbbb (resolved)

- Higher BR
- Large multi-jets background.
- BDT to improve the purity of signal/bkg categories.
- $\circ\,$ BDT score distribution ightarrow input for the statistical analysis.
- ggF + VBF: $\sigma^{95\%}/\sigma_{SM}$ obs. (exp.) = 3.9 (7.8)
- Likelihood scan for different values of k_{λ} , k_{2V} ightarrow intervals

6

HH→bbbb (boosted)

ggF and VBF HH \rightarrow 4b decay where both H have large p_T > 300 GeV in the boosted regime

Benefits of the boosted strategy

- Enhanced sensitivity for anomalous couplings
- Less combinatorics than in resolved topology
- Small background from the tails of SM processes

Analysis strategy

- Reconstruct H→bb decay products as anti- $k_t \Delta R$ =0.8 jets
- \circ 2 highest-p_T anti-k_t =0.8 Δ R=0.8 jets as Higgs cands
- ParticleNet Jet tagger algorithm
- $\circ~$ VBF topology: two anti-kt 4 jets with large dijets mass and $\Delta\eta;$
- o ggF topology by vetoing the VBF one
- Obs. (exp.) 95% UP on HH production : 9.9 (5.1) x SM

Assuming $k_{\lambda} = k_t = k_V = 1$, the obs. (exp.) constraint @95%CL: $0.62 < \kappa_{2V} < 1.41$ (0.66 $< \kappa_{2V} < 1.37$) The strongest constraint on κ_{2V} so far.

The hypothesis $k_{2V}=0$ (with other couplings equal to 1), is excluded at a CL higher than <u>99.9</u>%.

CMS: HH→WWγγ

CMS: HH→WW_{YY}: HEFT

HEFT ggF cross section modeling with three new contact interactions: ttHH (C₂), ggHH (C_{2q}), ggH (C_q)

 $\begin{aligned} \mathcal{L}_{\mathbf{h}} &= \frac{1}{2} \partial_{\mu} \mathbf{h} \partial^{\mu} \mathbf{h} - \frac{1}{2} \mathbf{m}_{\mathbf{h}}^{2} \mathbf{h}^{2} - \mathbf{k}_{\lambda} \lambda_{\mathrm{SM}} \upsilon \mathbf{h}^{3} - \frac{\mathbf{m}_{\mathbf{t}}}{\upsilon} (\upsilon + \mathbf{k}_{\mathbf{t}} \mathbf{h} + \frac{c_{2}}{\upsilon} \mathbf{h} \mathbf{h}) (\mathbf{t}_{\mathrm{L}}^{-} \mathbf{t}_{\mathrm{R}} + \mathbf{h}. \mathbf{c}.) + \frac{1}{4} \frac{\alpha_{\mathrm{s}}}{3\pi\upsilon} (\mathbf{c}_{\mathrm{g}} \mathbf{h} - \frac{c_{2g}}{2\upsilon} \mathbf{h} \mathbf{h}) \mathbf{G}^{\mu\nu} \mathbf{G}_{\mu\nu} \end{aligned}$

	В	Benchmark		κ_{λ}	κ_t	c2	c_g	c_{2g}
	SM	1.0	1.0	0.0	0.0	0.0		
		1	1	7.5	1.0	-1.0	0.0	0.0
			2	1.0	1.0	0.5	-0.8	0.6
			3	1.0	1.0	-1.5	0.0	-0.8
			4	-3.5	1.5	-3.0	0.0	0.0
			5	1.0	1.0	0.0	0.8	-1
<u>126</u>			6	2.4	1.0	0.0	0.2	-0.2
	26	6	7	5.0	1.0	0.0	0.2	-0.2
	~	0	8	15.0	1.0	0.0	-1	1
$\widehat{\infty}$	0	0	9	1.0	1.0	1.0	-0.6	0.6
5	3	8	10	10.0	1.5	-1.0	0.0	0.0
2	2	5	11	2.4	1.0	0.0	1	-1
ດ	4	3	12	15.0	1.0	1.0	0.0	0.0
0	0	0	8a	1.0	1.0	0.5	0.8	0.0
			1b	3.94	0.94	$\frac{-1}{3}$	0.75	-1
Ī	Ξ	Ĭ	2b	6.84	0.61	$\frac{1}{3}$	0.0	1.0
ר ור			Зb	2.21	1.05	$\frac{-1}{3}$	0.75	-1.5
			4b	2.79	0.61	13	-0.75	-0.5
			5b	3.95	1.17	$\frac{-1}{3}$	0.25	1.5
			6b	5.68	0.83	$\frac{1}{3}$	-0.75	-1.0
			7b	-0.10	0.94	1.0	0.25	0.5

BSM

HH combination: 95% C.L. limits on the signal strength

The observed (expected) combined 95%CL UL on σ is found to be 3.4 (2.5) times the SM prediction.

Improvements w.r.t combination with 2016 data only due to:

- Detector upgrades
- CMS reconstruction & object tagging
- Improved analysis techniques
- Addition of new channels

HH combination: constraint @95%C.L. on k_{λ} and k_{2V}

 Obs. (exp.) constraint @ 95%CL: −1.24 < k_λ < 6.49 (−2.28 < k_λ < 7.94)

• Significance for excluding $k_{2V} = 0$

CMS excluded $k_{2V} = 0$ with 6.6 σ assuming SM values of other k's. Quartic VVHH coupling estabilished for the first time!

Future perspectives

- Combination of H and HH results
- Adding more statistics to improve the sentisivity to the SM (Run2 + Run3 data)
- Combination of ATLAS and CMS results
- Adding the contribution of new analyses
- Get prepared to HL-LHC \rightarrow possible observation of HH!
- Probe some BSM scenarios:\
 - HEFT (search for a general parametrization of the cross-section as function of the 5 HEFT couplings)
 - Perform resonant analyses (VHH)

Thanks!