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Structure
➢ The Standard Model of particle physics

➢ Four top quark production

➢ State of the art

➢ Event Level MVA

➢ Top reconstruction

➢ Conclusions
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The Standard Model (SM)
Three out of the four fundamental 
interactions

➢ Electromagnetic
➢ Strong
➢ Weak

Elementary particles
➢ Quarks
➢ Leptons
➢ Gauge bosons
➢ Higgs bosons

Not covered phenomena

➢ gravitational interaction
➢ dark Energy
➢ dark Matter
➢ matter-antimatter asymmetry 
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Why tttt?

4 top production:

➢ CMS: (expected 4.9) observed 5.5 σ 

➢ ATLAS: (expected 4.3) observed 6.1 σ

Features:

➢ Statistically limited

➢ Distinctive signature

➢ Sensitivity to top-H Yukawa coupling and BSM 
physics

➢ Unique sensitivity for 4 fermions operators

Important in the SM framework and as a probe for 
new Physics Beyond SM

arXiv:2305.13439

arXiv:2303.15061 

SM

EFT
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tttt decay channels
Multiple final states

1ℓ & 2ℓOS channels

➢ BR ~ 57%
➢ large tt irreducible background

2ℓSS & multilepton

➢ BR ~ 13%
➢ highest sensitivity

0ℓ (hadronic)

➢ BR ~ 31%
➢ significant QCD & tt backgrounds
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Long history: single top quark production

➢ 2009 → observation @ Tevatron [arXiv:0906.0523]
➢ 2011 → ML aided measurement by CMS [PhysRevLett.107.091802] & ATLAS [arXiv:1205.3130v3]

ML in tttt

➢ Many searches through the years 

Machine Learning (ML) in tttt
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Long history: single top quark production

➢ 2009 → observation @ Tevatron [arXiv:0906.0523]
➢ 2011 → ML aided measurement by CMS [PhysRevLett.107.091802] & ATLAS [arXiv:1205.3130v3]

ML in tttt

➢ Many searches through the years → Boosted Decision Trees (BDTs) as the main tool
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tttt @ ATLAS with Neural Networks (NNs)
2ℓSS & 3ℓ+ channels

➢ ttW BKG estimation procedure 
➢ Separate treatment of 3t, tttW, tttq
➢ Lower jet and lepton pT cuts

Graph NN (GNN) [GRAPH_NETS]
➢ Edge-Convolution layers (multi-jet 

correlation)
➢ Each node 

○ jets, leptons, ET
miss

○ 4-momenta, b-tagging scores, 
lepton charges, multiplicities

➢ Edges: 3 angular separation features
➢ Classifier training for xSec measurement

arXiv:2303.15061 

Score > 0.6

Edge convolution [1801.07829]

6.1𝛔 (4.3𝛔) expected, consistent with SM

Constraints on 𝜘t and
 CP mixing angle 𝛼
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2ℓOS channel arXiv:2303.03864
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Input features:

➢ Njets
➢ mT of leptons, jets, 

lepton/jet-system
➢ pT, η, ф of (sub)leading lepton and 

first 3 leading jets 
➢ pT of first 8 jets
➢ HT, HT,b, ΔHT
➢ Δф. Δη of leptons and jet system
➢ ΔR between b-jets, b-jets & leptons
➢ m4b
➢ m2

T of leptons and b-jets

tttt, ttbb, ttcc, ttlight

Event level Neural Network (NN) 8



MVA Evaluation

tttt ttbb

ttcc ttlight

AUC = 0.95 AUC = 0.73

AUC = 0.72 AUC = 0.91

➢ Better performance for tttt and ttlight
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➢ How to improve the score?
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Jet array 
variables

1% increase for tttt, ttcc, ttlight

3% for ttbb 
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MVA Evaluation

tttt ttbb

ttcc ttlight

AUC = 0.95

➢ Better performance for tttt and ttlight

➢ How to improve the score?
○ Long Short Term Memory layer
○ Adding topology variables + 

LSTM

➢ Tagging hadronic component
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Top quark configurations
2 possible configurations based on the angular superposition between quarks and b-jet   

Resolved Merged
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Category definition

Adapting the strategy from a previous charged 
Higgs search

➢ Signal truth-matched trijets
➢ Background at least one non-matched jet
➢                  0.4

tttt

 Signal Background
13
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Classifier performances

AUC = 0.92

Good performance with a Keras DNN with 2 
Dense Layers (64/32), a Dropout Layer 
(20%), and a ~300k balanced dataset 
normalized with a robust scaling technique.

Define 4 WPs →

➢ FPR @ 10% = 0.675  → L
➢ FPR @ 5% = 0.599 → M
➢ FPR @ 1% = 0.936 → T
➢ FPR @ 0.1% = 0.977 → VT
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Classifier performances

AUC = 0.92

Good level of 
separation in the 

prediction

Residual 
misclassification due 

to low statistics
15

Good performance with a Keras DNN with 2 
Dense Layers (64/32), a Dropout Layer 
(20%), and a ~300k balanced dataset 
normalized with a robust scaling technique.

Define 4 WPs →

➢ FPR @ 10% = 0.675  → L
➢ FPR @ 5% = 0.599 → M
➢ FPR @ 1% = 0.936 → T
➢ FPR @ 0.1% = 0.977 → VT



Classifier performances

➢ Most signal events have two 
high scores 

➢ Tail to low values for the 
subleading

➢ Very few events have no 
signal-like hadronic top 
candidates
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Summary

➢ tttt provides input for future searches

➢ BDTs as leading classifiers 

➢ 2lOS channel not included in the observation

➢ Attempt to increase sensitivity via ML techniques

➢ Event level MVA shows limited classification capability

➢ Extract information on hadronic top quarks
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Thank you
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Large Hadron Collider (LHC)

 LINAC 2      Linear Accelerator 2
 PS                Proton Synchrotron
 SPS              Super Proton Synchrotron 
 LHC             Large Hadron Collider

  



Compact Muon Solenoid (CMS)

Cylindrical detector made of:

➢ Silicon Tracker;

➢ Electromagnetic Calorimeter 
(ECAL);

➢ Hadronic Calorimeter 
(HCAL);

➢ Superconducting Solenoid;

➢ Muon System.  

Silicon 
Tracker

Superconducting
Solenoid Muon System

ECAL

HCAL



CMS reference  frame
➢ r : radial distance from z-axis;

➢ Ф : angle on (x-y) plane;

➢ η : pseudorapidity, defined as:

In which θ is the polar angle

Angular distances between objects using Ф and η



CMS
2ℓSS & multilepton: [TOP-22-013]
All-hadronic & 1ℓ & 2ℓOS: [TOP-21-005]

ATLAS
2ℓSS & multilepton: [CERN-EP-2023-055]
2ℓSS & multilepton: [Eur. Phys. J. C 80 (2020) 1085]

CMS
tttt + MET SUSY: [SUS-21-007] 
type II HDM: [TOP-18-003]

ATLAS
top-philic resonances : [CERN-EP-2023-048]
Heavy Higgs: [ATLAS-CONF-2022-039] [CERN-EP-2022-170]
R-parity violating SUSY: [Eur. Phys. J. C 81 (2021) 102]
Gluinos + bjets: [ATLAS-CONF-2018-041]

tttt @ LHC
Many SM and BSM searches through the years

SM

BSM

https://cms.cern.ch/iCMS/analysisadmin/cadilines?line=TOP-22-013&tp=an&id=2607&ancode=TOP-22-013
https://cms.cern.ch/iCMS/analysisadmin/cadilines?line=TOP-21-005&tp=an&id=2430&ancode=TOP-21-005
https://inspirehep.net/literature/2648095
https://link.springer.com/article/10.1140/epjc/s10052-020-08509-3
https://cms.cern.ch/iCMS/analysisadmin/cadilines?line=SUS-21-007&tp=an&id=2478&ancode=SUS-21-007
https://cms-results.web.cern.ch/cms-results/public-results/publications/TOP-18-003/index.html
https://inspirehep.net/literature/2648829
https://cds.cern.ch/record/2815674
https://arxiv.org/pdf/2211.01136.pdf
https://link.springer.com/article/10.1140/epjc/s10052-021-09761-x
https://inspirehep.net/literature/1684002


MVA Evaluation

tttt ttbb

ttcc ttlight

AUC = 0.95 AUC = 0.72

AUC = 0.72 AUC = 0.91

Model performance given in terms of ROC Area Under Score (AUC)

Where

➢ TP = True Positive

➢ FP = False Positive

➢ TN = True Negative

➢ FN = False Negative



ttbb ttcc ttlighttttt

tttt_LSTM ttbb_LSTM ttcc_LSTM ttlight_LSTM

Model performances
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2lOS inclusive plots
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Boosted Decision Trees (BDTs)

Supervised Learning: classification known from 
the outset

➢ Input: kinematics and high level variables
➢ Output: score ∊ [0,1]

Many benefits…
➢ Efficiency: training and predictions 

are very fast
➢ Not scale sensitive: mix of continuous 

and discrete variables
➢ Non linear decision boundaries: 

modelling complex non linear 
relationships

➢ Easy interpretability: importance of 
each feature known
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Supervised Learning: classification known from 
the outset

➢ Input: kinematics and high level variables
➢ Output: score ∊ [0,1]

Many benefits…
➢ Efficiency: training and predictions 

are very fast
➢ Not scale sensitive: mix of continuous 

and discrete variables
➢ Non linear decision boundaries: 

modelling complex non linear 
relationships

➢ Easy interpretability: importance of 
each feature known

… and many limitations
➢ Sensitive to overfitting: always cross 

validate!
➢ Limited generalization: small or 

noisy datasets affect prediction
➢ Difficulty with large datasets: can 

easily become computationally 
expensive



tttt @ CMS with BDTs
2ℓSS & 3ℓ & 4ℓ

➢ ttW modelling: NLO QCD MC
➢ Additional large uncertainty on tt̄W + jets
➢ Improved lepton ID, b-tagging, SR selection

5.5𝛔 (4.9𝛔) expected, consistent with SM

Event level BDT 

➢ Multivariate analysis: tttt, ttX, tt
➢ 31 input features
➢ Different BDTs trained for 

different channels to account for 
kinematic differences

➢ Thorough tuning and cross 
validation

Fit optimized by flavour splitting the SR

arXiv:2305.13439

https://arxiv.org/abs/2305.13439


Neural Networks (NNs)

Inputs Outputs

Hidden

Layers of interconnected nodes (neurons) that convert weighted inputs to outputs; 
during the learning process these weights are updated. Recognises patterns in the data. 

Many uses in HEP: tracking, Fast Triggering. detector calibration, background rejection, 
anomaly detection, jets classification, event selection…
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Inputs Outputs

Hidden

Layers of interconnected nodes (neurons) that convert weighted inputs to outputs; 
during the learning process these weights are updated. Recognises patterns in the data. 

Many uses in HEP: tracking, Fast Triggering. detector calibration, background rejection, 
anomaly detection, jets classification, event selection…

ProsPros
➢ Pattern Recognition: recognizing complex patterns, aiding tasks like 

particle identification and event reconstruction.
➢ Data-driven Insights: valuable insights from data, revealing 

correlations not immediately apparent.
➢ Adaptability: ML adapts to changing conditions, handling diverse 

datasets effectively.
➢ Improved Sensitivity: ML techniques enhance experiment sensitivity 

by improving signal discrimination.



Neural Networks (NNs)

Inputs Outputs

Hidden

Layers of interconnected nodes (neurons) that convert weighted inputs to outputs; 
during the learning process these weights are updated. Recognises patterns in the data. 

Many uses in HEP: tracking, Fast Triggering. detector calibration, background rejection, 
anomaly detection, jets classification, event selection…

ProsCons
➢ Interpretability: may be difficult to pick up the logic behind the 

learning
➢ Overfitting: may capture noise or spurious correlations instead of 

genuine physics signals
➢ Computational Complexity: computationally intensive, requiring 

significant resources
➢ Model Validation and Uncertainty Estimation: calidating 

predictions and estimating uncertainty is challenging, requiring 
rigorous methods
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MVA Evaluation

tttt ttbb

ttcc ttlight

AUC = 0.95 AUC = 0.72

➢ Better performance for tttt and ttlight

➢ How to improve the score?
○ Long Short Term Memory layer
○ Adding topology variables + 

LSTM

CMS Work in  progress CMS Work in  progress



 

2 possible configurations based on the angular superposition between quarks and b-jet   
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Kinematic variables of:
➢ Single subjets;
➢ W boson system;
➢ Top quark system;

Angular separations;

Jets flavour scores;

Soft Drop defined as:

Object Level NN



f(x) = max(0,x)

f(x) = max(0,x)

20%

Kinematic variables of:
➢ Single subjets;
➢ W boson system;
➢ Top quark system;

Angular separations;

Jets flavour scores;

Soft Drop defined as:

Object Level NN

➢ 260k entries in 2lOS baseline selection

○ 50% signal (1)

○ 50% background (0)

➢ Robust Scaler for data preprocessing;



Classifier performances

AUC = 0.92

Good performance with a Keras DNN with 2 
Dense Layers (64/32), a Dropout Layer 
(20%), and a ~300k balanced dataset 
normalized with a robust scaling technique.

Define 4 WPs →

➢ FPR @ 10% = 0.675  → L
➢ FPR @ 5% = 0.599 → M
➢ FPR @ 1% = 0.936 → T
➢ FPR @ 0.1% = 0.977 → VT
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