Search for emerging jets in the ATLAS detector

LNF Spring School, Young Researchers' Workshop

Thomas WOJTKOWSKI

Context

Search for physics beyond Standard Model at the LHC

- Standard Model (SM) : only 5% of the energy-mass in the Universe
- **Dark Matter** :

- manifestation through gravitational effects (galaxy rotation curves, gravitational lensing ...), but unknown nature - hypothesis : could be new massive particles weakly interacting with SM ones

• Large Hadron Collider : p-p collisions at 13.6 TeV total energy - possible production of dark matter particles through very rare process

ATLAS detector

- General purpose detector : SM, search for new physics
- Structure in layers : - inner detector : *track* (trajectory and momentum of a charged particle curved by magnet system) - calorimeters : *cluster* (particle energy deposition except for μ and ν)
 - **muon spectrometer** : muon trajectory and momentum

- 40.10^6 beam crossings /s : trigger system, 1000 events /s stored for analysis - must be very well configured
 - Offline event reconstruction : signals turn into physical object (jets, leptons, photons ...)

Hadronic jets

- QCD processes :
 - pp collision, emission of high energy parton
 - parton shower : collinear partons emitted
 - hadronization : gathering of partons to form hadrons
- Jet : cone of produced hadrons - highly common object at the LHC
- Different jet topologies (q/g, top ...)

- In ATLAS, different ways to reconstruct jet constituents using tracks and clusters
- Jet algorithms regroup constituents

Hidden sector

- Extension SM : QCD-like hidden dark sector - dark quarks q_d $\mathcal{L}_{d} = \bar{q}'_{i} (i D - m_{q'_{i}}) q'_{i} - \frac{1}{\Lambda} G'^{\mu\nu} G'_{\mu\nu}$ - dark gluons g_d
- Parton shower and hadronization in dark sector \rightarrow jet of dark hadrons
- Stable particle : DM candidates
- Portal SM hidden sector, new interaction :

- q_d production in pp collisions - dark hadrons decay to SM quarks, forming jets : dark, semi-visible or **emerging**

Emerging jets

- Model considered :
 - q_d production via **new** Z' **mediator** (s-channel)

$$\mathcal{L}_{\rm med} = -\frac{1}{4} Z'^{\mu\nu} Z'_{\mu\nu} - \frac{1}{2} M_{Z'}^2 Z'^{\mu} Z'_{\mu} + Z'_{\mu} (\bar{q}'_i \gamma^{\mu} q'_i - \frac{1}{2} M_{Z'}^2 Z'^{\mu} Z'_{\mu} + Z'_{\mu} (\bar{q}'_i \gamma^{\mu} q'_i - \frac{1}{2} M_{Z'}^2 Z'^{\mu} Z'_{\mu} + Z'_{\mu} (\bar{q}'_i \gamma^{\mu} q'_i - \frac{1}{2} M_{Z'}^2 Z'^{\mu} Z'_{\mu} + Z'_{\mu} (\bar{q}'_i \gamma^{\mu} q'_i - \frac{1}{2} M_{Z'}^2 Z'^{\mu} Z'_{\mu} + Z'_{\mu} (\bar{q}'_i \gamma^{\mu} q'_i - \frac{1}{2} M_{Z'}^2 Z'^{\mu} Z'_{\mu} + Z'_{\mu} (\bar{q}'_i \gamma^{\mu} q'_i - \frac{1}{2} M_{Z'}^2 Z'^{\mu} Z'_{\mu} + Z'_{\mu} (\bar{q}'_i \gamma^{\mu} q'_i - \frac{1}{2} M_{Z'}^2 Z'^{\mu} Z'_{\mu} + Z'_{\mu} (\bar{q}'_i \gamma^{\mu} q'_i - \frac{1}{2} M_{Z'}^2 Z'^{\mu} Z'_{\mu} + Z'_{\mu} (\bar{q}'_i \gamma^{\mu} q'_i - \frac{1}{2} M_{Z'}^2 Z'^{\mu} Z'_{\mu} + Z'_{\mu} (\bar{q}'_i \gamma^{\mu} q'_i - \frac{1}{2} M_{Z'}^2 Z'^{\mu} Z'_{\mu} + Z'_{\mu} (\bar{q}'_i \gamma^{\mu} q'_i - \frac{1}{2} M_{Z'}^2 Z'^{\mu} Z'_{\mu} + Z'_{\mu} (\bar{q}'_i \gamma^{\mu} q'_i - \frac{1}{2} M_{Z'}^2 Z'^{\mu} Z'_{\mu} + Z'_{\mu} (\bar{q}'_i \gamma^{\mu} q'_i - \frac{1}{2} M_{Z'}^2 Z'^{\mu} Z'_{\mu} + Z'_{\mu} (\bar{q}'_i \gamma^{\mu} q'_i - \frac{1}{2} M_{Z'}^2 Z'^{\mu} Z'_{\mu} + Z'_{\mu} (\bar{q}'_i \gamma^{\mu} q'_i - \frac{1}{2} M_{Z'}^2 Z'^{\mu} Z'_{\mu} + Z'_{\mu} (\bar{q}'_i \gamma^{\mu} q'_i - \frac{1}{2} M_{Z'}^2 Z'^{\mu} Z'_{\mu} + Z'_{\mu} (\bar{q}'_i \gamma^{\mu} q'_i - \frac{1}{2} M_{Z'}^2 Z'^{\mu} Z'_{\mu} + Z'_{\mu} (\bar{q}'_i \gamma^{\mu} q'_i - \frac{1}{2} M_{Z'}^2 Z'_{\mu} + Z'_{\mu} (\bar{q}'_i \gamma^{\mu} q'_i - \frac{1}{2} M_{Z'}^2 Z'_{\mu} + Z'_{\mu} (\bar{q}'_i \gamma^{\mu} q'_i - \frac{1}{2} M_{Z'}^2 Z'_{\mu} + Z'_{\mu} (\bar{q}'_i \gamma^{\mu} q'_i - \frac{1}{2} M_{Z'}^2 Z'_{\mu} + Z'_{\mu} Z'_{\mu} + Z'_{\mu} (\bar{q}'_i \gamma^{\mu} q'_i - \frac{1}{2} M_{Z'}^2 Z'_{\mu} + Z'_{\mu} Z'_{\mu} + Z'_{\mu} Z'_{\mu} + Z'_{\mu} Z'_{\mu} Z'_{\mu} + Z'_{\mu} Z'_{\mu} + Z'_{\mu} Z'_{\mu} + Z'_{\mu} Z'_{\mu} Z'_{\mu} + Z'_{\mu} Z'_{\mu} + Z'_{\mu} Z'_{\mu} Z'_{\mu} + Z'_{\mu} Z'_{\mu} Z'_{\mu} + Z'_{\mu} Z'_{\mu} Z'_{\mu} Z'_{\mu} + Z'_{\mu} Z''_{\mu} Z''_{\mu} Z''_{\mu} Z''_{\mu} Z''_{\mu} Z''_{\mu} Z''_{\mu} Z''_{\mu} Z''_{\mu}$$

- Formation of jet containing unstable ρ_d and π_d : - ρ_d decays to π_d
 - π_d decays to SM quarks with $c\tau_{\pi_d} \sim \text{mm}$

- Signal appearance at some distance from the interaction point : emerging jet (EJ)
- Unexplored jet topology

Double hadronization (in both hidden and visible sectors)

Emerging jets analysis

- Final state : 2 energetic jets, displaced tracks and secondary vertices
- Main background : di-jet events from QCD processes - can reproduce EJ signature : neutral B mesons, photons (pair production)

ATLAS event with 2 pair-producing photons (green cones)

• « Cut-and-count analysis » :

events), signal region (SR) definition

- SM contribution estimation in SR
- statistical interpretation, constraint on model parameters (if no excess)

ATLAS Trigger and EJ model

- High p_T jet trigger : jet with $p_T > 460$ GeV
- Emerging jet trigger : jet with $p_T > 200$ GeV, $PTF^{jet} < 0.08$ (Prompt Track p_T Fraction)
- Signal events MC simulation : 3 free parameters

$m_{\pi_d} \; (\text{GeV})$	5	10	20
$c au_{\pi_d} \ (\mathrm{mm})$		5, 50	
$m_{Z'}$ (GeV)	600, 1500, 3000		

High p_T jet trigger can't be used to search for $m_{Z'} = 600 \text{ GeV signal}$

- Strategy : 2 separate event selections
 - one using the high p_T jet trigger

- the other using the emerging jet trigger, sensibility to low $m_{Z'}$ signal

Event selection based on EJ trigger

- Discriminating jet variables :
 - track variable : PTF
 - substructure : $ECF2 = \sum p_{T_i} p_{T_j} \Delta R_{ij}$

(quantify energy distribution within the jet)

- SR defined by $ECF2_{lead. jet}$ and $PTF_{sub-lead. jet}$ cuts
 - decorrelated variables
 - complementary effects on background elimination
- What cut values ? : gain on signal/background ratio

Background estimation

- 4 regions in a $(PTF_{sub-lead. jet}, ECF2/p_{T lead. jet})$ plane delimited by cut values
- **Data-driven** background estimation in A (SR): $N_A^{bkg} = \frac{N_C^{bkg}}{N_D^{bkg}} \times N_B^{bkg} \approx \frac{N_C}{N_D} \times N_B$

- decorrelated variables for background events - negligible signal presence in B, C and D (likelihoodfit can take it into account)

• First check on simulated background events :

QCD di-jet	$N_{events} \pm MC$ stat. uncertainty
А	305 ± 141
В	6324 ± 730
С	818 ± 182
D	17462 ± 1003

 $n_{A}^{bkg} = (n_{R}^{bkg} \times n_{C}^{bkg})/n_{D}^{bkg} = 296 \pm 76 \text{ (MC stat.)}$

Sub-leading jet PTF

350

300

250

200

150

100

50

25

ABCD method in validation regions

4 new regions with X varying :

ECF2/pT [GeV]

QCD di-jet, EJ trigger + pre-selection 350 **ATLAS** Simulation √s = 13.6 TeV, 51.8 fb⁻¹ Work in Progress 0.005 X 300 80 -eading jet 250 60 200 150 40 -SR 100 20 50 0.2 0.8 0.6 0 0.4

Sub-leading jet PTF

	$0.1 < PTF_{sub-lead. jet} < X$	$PTF_{sub-lead. jet} \geq$
$30 {\rm GeV}$	A'	B'
80 GeV	C'	D'

Conclusions - Prospects

• Search for BSM physics with the ATLAS detector : long lived particles producing a unusual di-jet topology

- Optimisation still need to be improved : additional selections on vertices, on track variables; different approach for the ABCD plane to be tested
- Validation of the background estimation in data, in a region far away from the SR (to avoid possible signal contamination)

Thanks for your attention