

XXI LNF SPRING SCHOOL "BRUNO TOUSCHEK" IN NUCLEAR, SUBNUCLEAR AND ASTROPARTICLE PHYSICS 8TH YOUNG RESEARCHERS' WORKSHOP

Istituto Nazionale di Fisica Nucleare

THE SEARCH OF MAGNETIC MONOPOLES WITH MISSING TRANSVERSE ENERGY TRIGGERS WITH THE CMS EXPERIMENT

DE ROECK, A., HENSEL, C., MALBOUISSON, H., SOEIRO, M., MACEDO, M., SRIMANOBHAS, N., CHEN, K.F., <u>OLIVEIRA, T.</u>

Outline

OLIVEIRA, T.

PAGE 02

Monopole Search Strategy

- **Proposition:** complete the electromagnetic duality;
- **Dirac:** presence of a monopole, quantisation of the electric charge and angular momentum;

13 MAY 2024 OLIVEIRA, T.

• 't Hooft and Polyakov:

• **U(1):** topological magnetic monopoles solutions for SSB gauge.

Monopoles @ Colliders:

pair production and highly ionising

few TeV, acessible in the LHC.

• Monopole Identification: combination of tracks and ECAL deposits:

• High ionization capacity: large number of saturated strips,

• Energy deposition: narrow and concentrated in the ECAL (n strips).

Monopole Tracking Reconstruction

- Magnetic charge: expected curvature along (opposite) direction of the CMS magnetic field;
- HIP: Energy loss in the tracker several orders of magnitude higher than a normal track;
- **Strong** inefficiency of the CMS Standard Reconstruction Track.

- **Combination** of standard track segments to form the monopole curved track. • **Two fits** at the combined tracks:
 - Circular Fit in the XY-plane: (possible) electrical charged monopoles;
 - **Parabola in the pZ-plane:** account for the curvature.

13 MAY 2024 OLIVEIRA, T.

Preselection parameters.

$Par0 \to d_0 = \sqrt{(a-c)^2 + b^2 - c }$	$< 0.6 { m ~cm}$
$\text{KYPar2} \rightarrow \phi_0 - \arctan(\frac{b}{c-a}) $	< 1000

$ \text{RZPar0} \rightarrow Z_0 = d $	< 10 cm
$ \mathrm{RZPar1} ightarrow \eta_0 = f $	< 999
$ZPar2 \rightarrow \rho - Z \text{ curvature} = g $	$< 0.005 \ { m cm}^{-1}$

Monopole Identification

- Ionisation of the established track set;
- Probability of strip saturation;
- MIP Background Hypothesis: 0.07.

 $\sqrt{-\log(\text{BinomialI}(0.07, \text{TotalStrips}, \text{SaturatedStrips}))}$

- 5000 electrons-charge equivalent;
- Single crystal energy deposition;
- High energy "spike".

$$f_{51} = \frac{E_{5\times 1}}{E_{5\times 5}} \qquad f_{15} = \frac{E_{1\times 5}}{E_{5\times 5}}$$

• Run2: Signal Region definition in dEdXSig > 9.0 and f51 > 0.85.

13 MAY 2024

OLIVEIRA, T.

PAGE 05

Monopole Search: Triggers and Datasets

• DY and PF as **benchmarks** for HIP production;

- Improvement in the CMS analysis sensitivity:
- Photon-Fusion process @ LO; s=0,1/2 g= 1gD.

• No dedicated monopoles trigger at CMS:

• SinglePhoton:

- **MET**:
 - undetectable particles, neutrinos mostly known; • Violation of the momentun conservation; • Higher trigger efficiency (MC study); • Conjecture: one monopole is lost due to the trigger;
- large MET contribution.

OLIVEIRA, T.

13 MAY 2024 • Photon-Monopole similarities: Electromagnetism interaction; stopped in the ECAL; • **2016:** HLT Photon175 v*; • **2017/2018:** HLT Photon200 v*;

MET Triggers Approach

- Monopole @ (MET) Triggers:
 - **spike-like** signature in the ECAL;
 - L1 and HLT: implementation of spike filters;
 - rejection of the monopole signals;
 - High MET signature in the event.

- MET trigger paths:
 - CaloMET: pT from Calo Towers; lower efficiency;
 - **PFMET: pT from Particle Flow reconstruction.**
- Particle Flow MET trigger:
 - **Monopoles:** PF and fakePF candidates;
 - Efficiency calculation: two matches
 - RECO and GEN; PF and matched.
- New analysis strategy:
 - triggered photons and unclean clusters (simulation);
 - MET-related systematic uncertainties.

Signal Efficiency

• **Motivation:** Evaluate the fraction of events that passes through a set of requirements;

- **Significant** higher signal efficiency for PFMET trigger paths:
- Peak values at 2000-3500 GeV and no improve at 4500 GeV.

13 MAY 2024

MAY 2024 13

Relative Efficiency for Different Triggers

 $\epsilon_{rel} =$

• Motivation: Evaluate the efficiency of each step of the analysis cuts, relative to the previous;

- Relative efficient monopole identification;
- **Trigger** as the main source of **inneficiency** in the analysis;
- Higher overall relative efficiency for F51 cut for the PFMET250.

number of events after selections number of events of the previous selection

PAGE 09

Background Estimation

• (Double-)ABCD Method: 1 Signal (SR), 3 Cross-check (CR), 5 background dominated regions.

2016:

 $0 \le f_{51} \le 0.6$, $0.6 < f_{51} \le 0.85$, $0.85 < f_{51} \le 1$ $0 \leq dE/dx_{sig} \leq 7$, $7 < dE/dx_{sig} \leq 9$, $9 < dE/dx_{sig} \leq \infty$

2017 and 2018:

 $0 \le f_{51} \le 0.75, \ 0.75 \le f_{51} \le 0.85, \ 0.85 \le f_{51} \le 1$ $0 \le dE/dx_{sig} \le 7$, $7 \le dE/dx_{sig} \le 9$, $9 \le dE/dx_{sig} \le \infty$

- Regions 5,6,8 and 9 are blinded first;
- Expected background calculation:
 - \circ **CR:** obtained with 1,2,3,4 and 7.
 - **SR:** CR + background regions.
- Unblind of the Signal Region.
 - Number of observed and expected background.

8	9	7	8	9
5	6	4	5	6
2	3	1	2	3

7

7	8	9
4	5	6
1	2	3

Systematic Uncertainties

• Related to nature of the measurement apparatus, assumptions made by the experimenter, or the model used to make inferences based on the observed data.

- Data-driven background estimation: (conservative 99%) varying range of loose cuts, not strong dependency;
- Luminosity from LUM POG official numbers; Data
 - 2016: 2,6%; 2017: 2.3% and 2018: 2.5% overall uncertainty.
 - Tracker dE/dX cross-talk: (0.10%)
 - Electronic cross-talk between central strip and its neighbours
 - Change of 10% in the main strip cross-talk parameter.
- Inclusion of the MET-related systematic uncertainties.

Preliminary Limits

- Experiment sensitivity: terms of the cross-section upper limit;
- Expected 95% CL upper limits on the production cross-section for Drell-Yan spin-1/2.
 - investigation of the monopole mass range occurence.

- MET: 2480 GeV.
- Newer results soon!

- dedicated trigger;
- First limits on HECO production for Run 2 [2];

nit; [3] <u>1903.08491</u> tion for Drell-Yan spin-1/2.

Conclusions and Perspectives

- The **MET trigger** approach:
 - provide a better description of the process(?) with a higher trigger efficiency;
 - significant improvement of the signal and relative efficiencies;
 - increase in mass liimit and in the CMS sensitivity;
 - $\circ\,$ similar to ATLAS results.
- The inclusion of the Photon-Fusion process to the further improvement in the sensitivity due to its higher cross-section;
- Completion of the MET Analysis Strategy:
 - Skimmed Data with MET;
 - The inclusion of the MET-related systematic uncertainties.
- Further exploration of lower thresholds MET trigger paths.

r trigger efficiency; ies;