Characterization and Irradiation study for the Crilin Electromagnetic Calorimeter

C. Cantone, S. Ceravolo, V. L. Ciccarella, E. Di Meco, E. Diociaiuti, R.Gargiulo, P. Gianotti, D. Paesani, I. Sarra – LNF INFN F. Colao – ENEA Frascati A. Cemmi, I. Di Sarcina, J. Scifo, A. Verna – ENEA Casaccia

- C. Giraldin, D. Lucchesi, L. Sestini, D. Zuliani INFN Sezione di Padova
- E. Leonardi INFN Sezione di Roma Uno
- A. Saputi INFN Sezione di Ferrara
- N. Pastrone INFN Sezione di Torino
- G. Pezzullo Yale University
- D. Tagnani INFN Sezione di Roma Tre

Young Researchers' Workshop, XXI Frascati Spring School "Bruno Touschek", 13/05/2024

Crilin and the Muon Collider

Crilin (crystal calorimeter with longitudinal information): ECAL R&D for the future Muon Collider, which is being considered as an option for a next generation facility; studies for 3 and 10 TeV designs are being carried out

Muon Collider pros:

- $m\mu > me$ (negligible synchrotron radiation)
- **point-like particle:** all \sqrt{s} is available in collisions
- perfect for direct search of heavy states

 \rightarrow detectors must be able to cope with the BIB and to have good physics performances

Muon Collider ECAL requirements

BIB in the ECAL region (after nozzles and tracking system):

- mainly γ (96%, $\langle E \rangle = 1.7$ MeV) and n (4%)
- different **hit longitudinal profile** wrt signal
- **time of arrival flatter** wrt bunch crossing \rightarrow can exclude • most of BIB with an acquisition window of ~240 ps
- total ionising dose: ~1 kGy / year lacksquare
- total neutron fluence: 10¹⁴ n_{1MeVneq} / cm² / year

May 13 2024

Young Researchers' Workshop - V. Ciccarella

Muon Collider ECAL requirements

BIB in the ECAL region (after nozzles and tracking system):

- mainly γ (96%, <E> = 1.7 MeV) and n (4%)
- different **hit longitudinal profile** wrt signal
- time of arrival flatter wrt bunch crossing \rightarrow can exclude most of BIB with an acquisition window of ~240 ps
- total ionising dose: ~1 kGy / year
- total neutron fluence: 10¹⁴ n_{1MeVneq} / cm² / year

May 13 2024

\rightarrow a Muon Collider ECAL should have:

fine granularity to distinguish BIB and

σt ~ 80 ps

signal

Iongitudinal segmentation

- σ_E/E~ 10%/√E
- → Crilin is a good ECAL candidate, and a competitive option wrt the W-Si sampling calorimeter

Young Researchers' Workshop - V. Ciccarella

Why Crilin?

Semi-homogeneous calorimeter

Modular architecture made of stackable and interchangeable submodules → **longitudinal segmentation**

One layer: matrix of **PbF**₂ crystals, each read out by 2 series of 2 UV-extended SiPMs

PbF₂: dense, high n, low λ , Cherenkov light \rightarrow high light response speed, no significant transmittance loss up to 350 kGy

good timing resolution, sufficient resistance to radiation

Small SiPM pixels → **fine granularity**

Good light collection → good energy resolution

5 layers with a dodecahedra geometry → manageable number of readout channels, affordable

Two stackable, interchangeable **layers** Each layer has 3x3 10x10x40 mm³ PbF₂ crystals

SiPMs: Hamamatsu S14160-3010PS (3x3 mm² each, 10 µm pixels) Copper cold plates to exchange heat with the SiPM electronic board

Performances tested at LNF BTF and at CERN H2-SPS

Irradiation study: March 2024 Test Beam

Goal: study the LY loss of one layer of Proto-1 after γ ray irradiation (80 kGy dose) for different wrappings

Irradiation at Calliope (Enea Casaccia), ⁶⁰Co γ source, $E_{\gamma} = 1.25$ MeV

TB carried out at LNF BTF using e- beam with multiplicity 1 and E = 450 MeV

Beam centred on each crystal at each run, to study charge deposition in each crystal

TB timeline:

- → non irradiated module, **Teflon** wrapping + optical grease
- → same setup after 80 kGy dose
- → new crystals, **Mylar** wrapping + optical grease
- → same setup after 10 kGy dose
- \rightarrow same setup after additional 70 kGy dose (80 kGy on crystals)
- \rightarrow same setup after 48h and 60h from irradiation

Signal study: pedestals

Waveform integration to get charge deposition

Pedestal charge is selected using random triggers and empty events, and is fit to a Gaussian (pre dose double Gaussian distribution is due to the DAQ board characteristics)

Sigma increases with dose \rightarrow cannot use a constant cut on the deposited charge to exclude the pedestal →use the BTF lead glass calorimeter (behind Crilin) to perform the pedestal cut

example: readout channel 11

May 13 2024

Charge distribution, Teflon wrapping

Pedestal cut: charge deposition in the BTF calorimeter [5, 10] pC

After irradiation: teflon was damaged and brittle, crystals **lost transparency**

The number of photoelectrons (N_{pe}) is computed using:

$$N_{pe} = \frac{Q}{e \cdot G_{FEE} \cdot G_{SiPM}}$$

where $G_{FEE} = 10$, $G_{SiPM} = 2.5 \cdot 10^5$ at $V_{bias} = 91$ V

May 13 2024

Darker crystals give lower N_{pe} after irradiation

Charge distribution, Mylar wrapping

Pedestal cut: charge deposition in the BTF calorimeter > 5pC before 10kGy irradiation, [3, 8] pC after

Similar crystal status after irradiation, transparency loss was uniform length-wise in the crystals

no dose 80 kGy dose

N_{pe} for Mylar wrapping, + annealing

Post irradiation data shows a lower number of photoelectrons

After 48h and 60h, the charge distribution remains the same, and the N_{pe} estimate remains compatible with the one right after the 80kGy irradiation

Summary and next steps

- There was considerable variability in the crystals' **response** to radiation, despite the predictor's claim to have used >99.9% pure PbF₂ powder for crystal growth
- New tests have been planned to evaluate SiPMs PDE loss and optical grease degradation
- Next step would be to test the SiPMs response without irradiating the crystals, and conduct new irradiation tests monitoring the **Cherenkov light variations** using a blue laser
- An idea for future optimisation is using PbWO₄-UF crystals in the first ECAL layer (stable up to 2 MGy)

Young Researchers' Workshop - V. Ciccarella

Summary and next steps

- There was considerable variability in the crystals' **response** to radiation, despite the predictor's claim to have used >99.9% pure PbF₂ powder for crystal growth
- New tests have been planned to evaluate SiPMs PDE loss and optical grease degradation
- Next step would be to test the SiPMs response without irradiating the crystals, and conduct new irradiation tests monitoring the **Cherenkov light variations** using a blue laser
- An idea for future optimisation is using PbWO₄-UF crystals in the first ECAL layer (stable up to 2 MGy)

Next steps: Won a PRIN proposal for a grant partly assigned to develop a 5x5 x4 layers prototype (1 M_R , ~16.8 X_0)

Plan for 2025:

Expand the prototype to a 9x9 x5 layers module (2 M_R , ~22 X_0)

