XXI LNF Spring School "Bruno Touschek" 8th Young Researchers Workshop

The ITk pixel detector for the ATLAS Phase-2 Upgrade at HL-LHC

Zaza Chubinidze on behalf of ATLAS ITk Pixel Collaboration

8th Young Researchers Workshop Zaza Chubinidze

13–17 May 2024

• Scientific goals:

- Pushing the frontiers of particle physics.
- Exploring the properties of the Higgs boson with higher precision.
- Searching for new particles and phenomena beyond the Standard Model and etc.

- The High-Luminosity phase of the LHC (HL-LHC) will provide from 2029
 - **Proton-proton collisions** with up to **14 TeV** center-of-mass energies.
 - ∫ Ldt ~4000fb⁻¹ of integrated luminosity, an order of magnitude more than current data.

13-17 May 2024

AT

8th Young Researchers Workshop Zaza Chubinidze

Istituto Nazionale di Fisica Nucleare

• Instantaneous luminosity x 5-7.5 above the nominal value of 1×10^{34} cm⁻²s⁻¹

- Increase of additional pp collision per bunch crossing (pile-up) from 33 to 200
- Increased particle densities
 - \rightarrow need of increased granularity
 - \rightarrow high trigger rate
- Integrated luminosity x 10
 - x10 Increased radiation damage
 - Fluence up to 2 x 10^{16} neq/cm⁻² and 10 MGy Total Ionizing Dose
 - \rightarrow need more radiation hard technologies

A replacement of the current detector is by far not enough.

Upgrade ID Tracker to ITk

ITk sub Detectors

ITk Pixel Detectors

- The ATLAS ITk detector has been designed with **technologies providing higher granularity** (less pixel pitch), **radiation hardness**, **readout speed** and low material budget to maintain, or even improve upon, the performance of the current tracking system, while meeting the challenges of operation in the harsh HL-LHC environment.
- This has been achieved through a number of innovations in cooling CO² (with thin Titanium walls), power distribution, and readout system.

ITk Pixel Detector Performances

ITk Pixel Detector Performances

Zaza Chubinidze

ITk Pixel modules

- Sensor and FE Designed by **RD53 collaboration** in 65 nm CMOS technology.
- Pixel modules will be built with **3D** and planar sensors bump-bonded to the pixel readout ASIC (Front-End).
- The baseline sensor technologies for the ITk Pixel system **are n-in-p** structured **3D** sensors for the innermost layer and thin **Planar** sensors elsewhere. 3D sensor has less distance between contacts and it has more **radiation hardness** and **low power dissipation**.

```
8<sup>th</sup> Young Researchers Workshop
Zaza Chubinidze
```


Data transmission

- New The new Detector Readout System include: Gigabit receiver chip (GCBR), low-power Gigabit transceiver (lpGBT) and VTRx+ Which recovers Signal and serialize electrical links and converted to optical links. Up to 10.24Gb/s data transmission speed is available per one optical fiber.
- Each FE has 4 x 1.28Gb/s electrical links.
- Optical links are hosted by The Front-End Link eXchange (FELIX) DAQ interface.

8th Young Researchers Workshop Zaza Chubinidze

The Outer End-Cap integration at LNF

of Rings SP chain length # of Modules / Total # of Ring (# of Quad Modules) Modules Layer Ring Layer 2 11 8 32 352 Layer 3 8 11 44 352 Layer 4 9 13 52 468 1172

- A "bus tape" to deliver power and monitoring to the modules. ٠

Innovation is not only on the detector side, but also on services.

A small diameter titanium pipe is embedded in the HR structure to allow heat removal via a CO² cooling system and high thermal conductivity materials, as carbon based composites. The CO^2 evaporation temperature is assumed to be -30 °C.

Clean Room for EC integration at LNF

Clean room renovation project (ISO 6)

Clean room refurbishment at LNF per OEC assembly

Large Clean room designed for:

- Mechanical assembly, electrical testing, cooling
- Hosting climate chamber, transfer CO₂ cooling lines, dry air / N₂ distribution
- Currently Frascati is working on prototypes, which need system test.

Small demonstration stand with Half-Ring

13-17 May 2024

8th Young Researchers Workshop Zaza Chubinidze

- The design and construction of the new ATLAS tracker for the HL-LHC phase poses several challenges to deliver a comparable or even **improved physics performance with respect to the present one**, in the much harsher conditions of the HL-LHC.
- A new all-silicon tracking system is being developed by the ATLAS experiment to cope with increased number of events per bunch crossing, particle multiplicity and radiation levels at the HL-LHC.
- The ITk detector installation will start in 2026 in ATLAS.
- The ITk design provides large acceptance for tracking with at least nine points per track, high granularity and radiation hardness, combined with a low material budget.
- Both strips and pixels technologies have demonstrated the required tracking efficiency up to end-of-life dose.
- ITk production will be a global effort with more than fifty institutes world

Thank You For Your Attention! Any Questions?

8th Young Researchers Workshop Zaza Chubinidze

13–17 May 2024

ATLA