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● it's possible we produce particles that don't interact in our detector
 if very long-lived → dark matter candidate
 instead of this…:

Dark Matter: pairs of ... nothing?
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● it's possible we produce particles that don't interact in our detector
 if very long-lived → dark matter candidate
 we see this! ”missing energy” (MET)

Dark Matter: pairs of ... nothing?
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● production at colliders can happen if
 kinematically accessible
 coupling to quarks/gluons
 production cross section large enough

Dark Matter
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● production at colliders can happen if
 kinematically accessible
 coupling to quarks/gluons
 production cross section large enough

Dark Matter

● new particle production
decay to DM+X

 typically pair produced
● example: SUSY

 with R parity always 2 LSP's
yielding MET

 

DM from cascade decays
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● production at colliders can happen if
 kinematically accessible
 coupling to quarks/gluons
 production cross section large enough

Dark Matter

● new particle production
decay to DM+X

 typically pair produced
● example: SUSY

 with R parity always 2 LSP's
yielding MET

 

DM from cascade decays DM produced directly

  

 

● direct DM pair production through 
mediator

● but back-to-back DM particles
are invisible

 ISR diagrams provide
probe recoiling against DM pair

Discussed later
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Mediator focus
● the LHC's strength is to produce the mediator on-shell
● we must make the

mediator explicit
 an EFT “blob”

is not sufficient

● model description
 mediator type
 production mode
 couplings to q and DM
 mediator and DM mass
 consider beyond the minimal

Direct DM searches

etc...

Steven Lowette – Vrije Universiteit Brussel
LNF Spring School 2024 – BSM at high energies Page 52



Direct DM searches
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● Monojet search as the poster child example

Direct DM searches

 

● DM recoils against a jet from QCD ISR

● MET as sensitive observable
driven by trigger: MET > 250GeV
 

● irreducible Z→νν dominant BG
● remarkable precision achieved on BG!

 ~%  in bulk, 10% in tails
 using constraints from Z→μμ, Z→ee, 

γ+jets, W→μν and W→eν control regions
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● Monojet search as the poster child example

Direct DM searches

● many interpretations: DM s- and t-channel simp. 
models, Higgs portal, ADD extra dimensions, 
LeptoQuarks,...
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● Monojet search as the poster child example

Direct DM searches

● statistically limited
 improve slowly with luminosity

● systematically limited
 no low-hanging fruits left
 improve with hard work
 challenges and opportunities

at higher lumi

● theoretical uncertainties
already very well controlled

 NLO QCD+EWK
 arXiv:1705.04664
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beyond the invisible: link to visible
● LHC sensitivity to DM strongest when

producing mediator on-shell
● new mediator may still be probed

event if dark matter inaccessible
(eg. kinematically) at LHC

 quark (jet) final states guaranteed
 muon and electron pairs possibly too

● thus we can indirectly constrain dark matter models
 constraints on couplings
 from searches in dijet and dilepton final states
 model dependency!

→ always specify all parameters/assumptions

Di-X search interplay with DM
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● interpretation in LHC phase space
 probing mediators to several TeV
 strong complementarity of invisible

and visible channels
● exclusions crucially depend on

couplings to SM and DM!

Di-X search interplay with DM
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● translate interpretation in phase space of direct DM detection searches
● take-home message: complementarity

 best LHC results for low-mass DM, with mediator produced on-shell
● model dependency!

Dark Matter beyond LHC
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● ...assuming thermal dark matter production...
● ...assuming cold dark matter...
● ...assuming DM to be 1 particle...

● relic dark matter density is inversely proportional
to the DM annihilation cross section

 correct relic density at
<σv> ~ 3 x 10-26 cm3 / s

 this is the cross section of a 100 GeV
particle with a coupling like the
weak interaction

● so cosmology and particle physics
points us independently to a special
mass scale, the weak scale

 special role for the Higgs boson?
 the superesymmetry neutralino?

The WIMP miracle
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● hierarchy problem: scalar mass sensitive to all scales

 the integral can be cut off at a momentum scale Λ

 to cancel this radiative correction up to
the Planck scale…
we need to cancel 32 orders of magnitude
→ fine tuning

Supersymmetry
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● possible solution: supersymmetry (SUSY):
add a boson for each fermion, and vice versa

 scalar quarks and leptons

   extended Higgs sector and
   fermionic superpartners

● mixing between bino, winos and Higgsinos → charginos and neutralinos

● no SUSY at same masses observed → no perfect cancellation
 to save naturalneess and avoid new fine tuning:

higgsino ~ 100 GeV
stop  ~ 400 GeV
gluino  ~ 2000 GeV

Supersymmetry

majorana fermions as
gauge boson partners (“-inos”)
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● hierarchy problem

● unification of the forces

● EW symmetry breaking can be a
natural consequence of SUSY breaking

 under certain conditions in the Higgs sector

● dark matter
 gravitational evidence is overwhelming
 SUSY can provide an ideal WIMP
 note: dark matter is not a requirement put on SUSY models

it's the reverse: require proton stability through conservation of R parity
→ SUSY particles must come in pairs
→ the lightest SUSY particle is stable

● string theory requires SUSY
 but no indication at what energy scale

Supersymmetry appeal

Steven Lowette – Vrije Universiteit Brussel
LNF Spring School 2024 – BSM at high energies Page 65



● collider cross sections can be quite large
● current LHC energy and luminosity probes natural SUSY directly

● SUSY can still hide
in experimentally
difficult decays

Supersymmetry at LHC
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● high cross sections for strong production of heavy squarks and gluinos
 the squarks and gluinos then decay depending on the SUSY spectrum of lighter sparticles
 but since they are coloured, they will always produce quarks or gluons (jets)
 and the LSP will always give rise to undetected momentum in the detector
 generic feature: missing energy + jets + possible leptons/photons/...

a particularly SUSY-like signature are same-charge lepton pairs

● small cross sections for electroweak production of charginos, neutralinos, and 
sleptons

 Z's and W's appear in the decays, or leptons directly from the sleptons → can be used to 
suppress backgrounds

 depending on spectrum configurations, final states arise with 2, 3, 4 leptons, with or without 
Z resonances, same charge or not, same flavour or not

 generic feature: leptons + MET, but absence of jets

● also Higgs bosons can appear in the decays!

Supersymmetry at LHC
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● classic hadronic SUSY signatures
 jets + MET
 lepton + jets + MET
 SS dileptons + jets + MET
 …

● classic electroweak SUSY signatures
 Z/W/H + MET
 dileptons + MET
 ...

● many 10's of searches, years of work, no hints of SUSY
 maybe nature chose something else than these classic signatures?

Supersymmetry at LHC
some example diagrams
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● current experimental situation

Supersymmetry at LHC
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● zooming in on gluino and stop searches
 drivers of the fine-tuning tests

● limits from direct searches are now very stringent
 fine tuning seems inevitable
 simple low-mass SUSY solutions losing traction

Supersymmetry at LHC
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● the SM has a large diversity of long-lived particles

● why is this picture the way it is?

Long-Lived Particles in the SM
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● Fermi's golden rule states

with W the reaction probability, Mfi the matrix element, and ρ(E') the density of 
possible states in the final state, also called the phase space factor

● from this, one can calculate the partial decay width of a 2-body decay

with 

● so the smaller the mass difference between initial and final state, the smaller the 
partial width, and the larger the lifetime

Phase space
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● example 1: the neutron lifetime
● dimensional rough calculation:

 weak decay:
 mass dimension for partial width → multiply with a mass scale:
 the mass scale in the neutron decay phase space is:
 add in some factors pi from the phase space:

● this gives ~31s   ; the real value is 882s
 not super accurate, but not bad
 the importance of the phase space factor jumps out

● example 2: the neutral kaon
 2 (near) CP eigenstates from superposition of K0 and anti-K0

 KS → ππ:

 KL → πππ:

Phase space
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● the matrix element calculation will involve a coupling strength

● we know 3 forces in nature
 strong decays: τ ~ 10-22 s    → cτ  ~ 10 fm
 EM decays: τ ~ 10-18 s    → cτ ~ .1 nm
 weak decays: τ ~ 10-10 s    → cτ ~ cm

Coupling strength

experimentally
not observable

great for experiment!
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● from experiment:
 strong decays: τ ~ 10-22 s    → cτ  ~ 10 fm
 EM decays: τ ~ 10-18 s    → cτ ~ .1 nm
 weak decays: τ ~ 10-10 s    → cτ ~ cm

● but from the Standard Model in our energy range
 αS ~ 1

 αW ~ 1 / 30

 αEM ~ 1 / 137

● lifetime ~ 1 / coupling2

 (αS / αEM)2 → factor 104 - makes sense

 (αW / αEM)2 → way off; something else going on too...

Coupling strength
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● when the decay must proceed through an off-shell heavy mediator, we pick up 
another lifetime effect

● example from the muon decay
 no color charge, so no strong decay
 no EM decay possible without violating

lepton number conservation (μ→eγ, μ→eee)
 so only weak decay possible

● the weak decay involves an intermediate W boson
 the W boson propagator:

 the W is very heavy wrt the muon, so it simplifies: 

● so we pick up a 1/MW
4 ~ GF

2 dependence in the decay probability

● this is why the weak decays are so much weaker than the EM ones
 luckily leading to experimentally observable long-lived processes

Mass barrier
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● main reasons for decay lifetime differences:
 coupling of the interaction
 mass barrier for decays with heavy mediator
 phase space small if mass difference in and out small

● all these effects come in with some exponent, so effects are large

● other things playing
 decaying particle's mass
 Lorentz structure and potential mixing factors (eg. CKM)
 number of decay channels

including eg. colour factors
 suppression if only loop-level decay allowed
 decay through mixing

● these other effects usually don't play in the standard model
● but they may be very relevant in BSM scenarios

Recap: why such diversity in lifetime? 
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● current experimental situation

Back to SUSY at LHC
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…from compressed spectrum
● eg. AMSB scenario

 chargino and neutralino nearly mass degenerate
~300 MeV mass splitting → phase space suppression

 just enough room for a soft pion to be emitted
weak decay with off-shell “hadronic W”

 chargino becomes long-lived
● phenomenology of long-lived chargino

 disappearing track if decay within tracker
soft pion almost impossible to reconstruct

 strong ionization from mass (see later)
● note: often the disappearing track

is not there or usable in online
event selection (trigger)

Examples of long-lived SUSY
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… from mass barrier
● imagine the gluino much lighter than the squarks

 gluino carries double colour charge
→ needs to decay to 2 quarks and LSP

 such 3-body decay must happen
through intermediate squark (R parity...)

 if squarks heavy enough, gluino becomes long-lived

● long-lived gluinos → R hadrons
 long-lived gluino carries color charge
 QCD confinement implies the gluino must hadronize → R hadron

R-meson, R-baryon, R-gluinoball

Examples of long-lived SUSY

example from
Nucl.Phys. B726 (2005) 35-52
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● R hadrons bring unexpected phenomenology
 can be very massive thus non-relativistic

out-of-time signals in various subdetectors
 can be charged or neutral (gluino dressed with quarks or gluons)

if charged, heavy particle ionization in detector (see later)
 can have nuclear interactions with material
 interaction with material can lead to charge change

disappearing track, appearing track, kinked track
 can get stopped in material to decay at later time

preferentially trapped in dense material
decay time could be very large

● such features are useful to search for the signal
 but also difficult to simulate, control, predict,...

Examples of long-lived SUSY
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… from coupling
● if R parity is not conserved

 vertices are possible that violate B or L conservation
 proton lifetime must stay sufficiently long (~1034)
 hence the “couplings” of the new vertices must be sufficiently small

● easy to obtain long-lived particles in an R parity violating model
 example: long-lived neutralino

3-body decay through off-shell fermion

(see: Phys.Rept.420:1-202,2005)
 relevant phenomenology

displaced jets, displaced leptons
typically no missing momentum

Examples of long-lived SUSY
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● imagine a dark sector
 new particles that do not carry Standard Model charges

may contain dark matter particles (mass couples to gravity)
 a connection may arise from heavy particles charged under both SM and DS

● or it may arise through SM portals
 Higgs portal
 hypercharge portal
 neutrino portal

● these are the only ways a dark sector
may be directly coupled to the SM
through a renormalizable operator

● new states with long lifetimes are generic features of dark sector models
 dark sector may be rich, eg. with dark QCD, bound states, etc
 portal couplings can be small

Portals
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● suppose we add a U(1)' boson to the SM

we call this a dark photon
● the kinetic mixing term can be generated through new heavy particles that couple 

both to hypercharge and to the new U(1)'

 generates coupling 10-3 for mψ ~ EW scale
● but a priori, the coupling can be anything

Portals example: kinetic mixing

kinetic mixing
[Holdom '86]
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● let's now add a new fermion only charged under U(1)'

● and redefine the field

● mixing term disappears and new fermion gets hypercharge

● for a massless dark photon
 after EWSB arbitrary apparent electric charge: 

 new fermions are “millicharged” particles
● for massive dark photon

 coupling goes through off-shell photon/Z
 rich phenomenology: decays to electron, muon,

hadron, quark pairs
 at low mass, charged particles can further

radiate dark photons → lepton jets

 lifetime proportional to 1 / (mA' ε
2)

relevant at low masses and couplings

Portals example: kinetic mixing
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● assume a dark QCD: particles decoupled from SM, but with an SU(3) force
 produce through a heavy mediator carrying SM and dark charge
 decaying back to SM through hypercharge portal

● very unusual final states
 emerging jets
 semi-visible jets
 Soft Unclustered Energy Patterns

Portals example: dark QCD
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● neutrinos have mass, but right-handed neutrinos were not observed, so we cannot put 
them in the usual SU(2) doublet

 no Dirac mass terms
● one way out is to add right-handed Majorana neutrino, but a sterile one

 no SM gauge couplings
● seesaw mechanism generates the neutrino masses

 righthanded neutrino mixes in mass eigenstates

● several flavours of seesaw models exist

● if the righthanded neutrino is light, it can become long-lived

 this is a combination of a mass (phase space) and a mixing effect

Heavy Neutral Leptons
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● rich right-handed neutrino phenomenology at LHC (eg. Phys. Rev. D 91, 093010)

● long-lived effect only at
very low sterile neutrino mass

 strong dependence from m5

● experimentally difficult phase space
 soft decay products
 collimated objects
 hadron resonances

● at lower mass, also production
in B/D meson decays

Heavy Neutral Leptons
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● particles can be long-lived due to variety of effects
 narrow phase space, small coupling, and mass barrier as main lifetime drivers
 weak force gives us many observable long-lived particles already

● long-lived particles arise in multitude of contexts
 many proposals for problems of the SM model have versions that involve longlived particles
 also generic portal models for dark sectors often involve long-lived particles when decays 

back to SM happen
 regularly very exotic proposals appear
 often similar signatures arise in different contexts ← models are not easy guidelines

● take-away message
 long-lived particle phenomenology is very rich
 lifetimes are very sensitive to model parameters

● also: long-lived particles were not invented because we observed no BSM physics yet 
at the LHC

 they have always been there, but have become more visible now that mainstream searches 
have only been placing limit

Long-lived particle pheno wrap up
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● so the question then is: how to approach this richness experimentally
● signatures are very diverse...

Building an experimental story
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● and interplay between very different subdetectors

● No one-size-fits-all approach – decay products, lifetime, mass, boost: all dramatically 
affect the detector signature

 ...and sometimes all subdetectors must be combined for optimal results

Building an experimental story
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● lacking a clear top-down driving paradigm, we must work bottom-up
● we need to take an as experimental position as possible

 pheno models identify a final state as interesting
 then a search for this final state is built around the experimental signature rather than the 

model details
use the detector's capabilities as the basic driver of the analysis
keep the pheno model as an inspiration

● using the fact that SM long-lived particles give typically very different features than the 
signal sought, long-lived particle searches often manage to suppress the background 
to a negligible level

 being statistically limited is great for discovery
 good for analysis robustness

● the challenges are numerous though...

Experimental strategy
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● non-standard simulation
 sometimes special care in event generation
 GEANT challenges for R hadrons, SIMPs, quirks,...

● non-standard reconstruction
 timing info
 secondary vertices
 displaced jets and leptons
 dE/dx
 veto on material interactions
 ...

● non-standard triggers
 analysis specific, but common challenges
 opportunities in scouting and parking

● non-standard backgrounds
 cosmics, beam halo, spikes, noise,...
 missing hits from dynamic inefficiency, broken modules,...
 rare hadron decays and/or resolution tails

Experimental challenges
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● to keep it focused, I will not discuss special simulation or trigger pecularities
 very technical and very analysis specific

● I'll focus on a few low-level detector aspects
 to demonstrate the potential power of rarely used techniques
 to show one of the fun things of long-lived searches:

detector knowledge is power
● then I'll demonstrate some of the unusual backgrounds

 detector related
 accelerator related
 algorithmic

● this is heavily CMS (and own experience) biased, but it applies broadly
 each analysis will have its own challenges

Know your detector
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● ionization energy loss is decribed by the Bethe-Bloch relation

Using ionization energy
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● our tracking detectors measure energy deposits from MIPs with a very good signal-
over-noise

 usually we just use the information
that a hit occurred at a certain
position to seed the tracking algo

Using ionization energy
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● but we have more:
we measure the ionization energy 

 within a certain dynamic range
 current CMS tracker has an

analogue readout

Using ionization energy

dE/dx can be estimated
also taking into account track 
inclination

at low momentum we can 
estimate the mass
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● effect of mass – effect of charge

● dE/dx can be used to
 select massive charged particles ionizing the detector
 select both high-charge or low-charge particles

Using ionization energy
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● excellent timing of ECAL signals
● 200ps (300ps) timing resolution in barrel (endcap) for typical Z energies

 applications in delayed photons and jets

Using timing

JINST 5 (2010) T03011 CMS-DP-2014/011
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● also muon systems typically have good timing capabilities
 muon algorithms often use that in their ID variables

● long-lived particles may need reconstructions that take into account
out-of-time signals

Using timing
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● background from photon conversions and nuclear interactions in tracker layers can 
profit strongly from a material veto

 veto secondary vertices that
coincide with material location

● must do a dedicated data measurement
 using nuclear interactions
 using conversions to muons:

lower statistics but cleaner
 mostly useful in inner regions

Using material veto
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● beam halo are muons travelling along with the LHC beam
 but parallel, at potentially large radius
 created on the LHC collimators

● since they are in sync with the beam, their timing is off in reconstruction

● example time distribution for energy deposits in the CMS ECAL

Background from beam halo
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● cosmic muons come in continuously, so their timing is random
● when severely out of time, some hits may be lost

 could lead to missing tracker track, while muon or calo deposit is there
● typically angular variables are used to suppress this background

 using the fact that you see two muons/tracks that belong to the same track really

● one of the few backgrounds
for which larger luminosity helps

 only integrated data-taking
time counts

Background from cosmic muons
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● LHC bunching each 25ns is not perfect
 RF has 2.5ns buckets

● by selecting out-of-time ECAL hits, you may pick up real physics from nearby RF 
buckets

 very small effect, but important
for a few analyses

 suppression is analysis dependent

Background from sattelite bunches

Phys. Lett. B 797 (2019) 134876
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● in standard CMS jets, we remove all charged hadrons not associated
to the primary vertex

 this helps significantly in reducing pileup effects
● suppose you are looking for neutral jets as a signal

 if you choose a wrong primary vertex,
then tracks from real QCD jets will be
removed, making them neutral

 such a wrong choice
has only a very
small probability

 but the QCD cross
section is huge

● must use non-standard
reconstruction to
suppress this

Background from wrong vertex
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● for fractionally charged particles, one selects tracks with many low dE/dx hits
● edges of silicon sensors don't collect all charge → low dE/dx
● tracker geometry such that presence of edge hit implies increased probability of 

additional edge hit(s)
 this leads to increased background
 suppress by rejecting tracks with hits on edges

Background from geometry
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● dE/dx very
sensitive
to radiation
damage

● fake low dE/dx

● high particle fluxes also
induce dynamic inefficiencies

 some expected
 some problematic
 mitigation not

always possible

Background from radiation

PXL L1 PXL L2PXL L1 PXL L3
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● when timing of a L1 trigger object (“primitive”) is not sufficiently accurate, it may be 
associated to a wrong bunch crossing

● the trigger system may then read out the wrong bunch crossing
● tracking detectors read out in a very narrow timing window

 while muon integrates in broad window
● so the event read out in the adjacent bunch crossing will look to have muons, but no 

tracks in the tracker
 a fake long-lived event!

Background from trigger misfiring
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● I showed you several examples, but for sure this is not an exhaustive list
● none of these are regular physics backgrounds
● none of these can be modeled reliably in simulation

 must be estimated from data
● all of these force you to take a step back from usual objects and usual tools

 often they touch upon low-level detector or algorithm details

● hard, but fun!

Backgrounds...
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● many many results

Search status
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● just a few highlights
● to demonstrate the

complementarity
of our searches

Search status
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● dark matter
 di-invisible → dark matter
 direct dark matter searches at LHC
 di-X interplay with dark matter – beyond the LHC

● supersymmetry
 appeal
 strong production: jets+MET
 weak production: leptons+MET

● long-lived particles
 why long-lived particles?
 experimental handles
 backgrounds
 search status

● looking ahead

Content Lecture 2
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● LHC Run-3 brings many new opportunities
 new low-threshold triggers

increased bandwidth, scouting, parking
 new displaced triggers
 new algorithms and new analysis techniques

a lot of machine learning

● HL-LHC will be another big step
 tracking at L1 trigger
 increased timing precision
 flavour tagging in forward region
 improved VBF signature tagging
 shower reconstruction in calorimeter
 …

● new ideas for searches keep emerging
 eg. unsupervised searches → anomaly detection
 eg. weird signatures

Looking ahead
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● proposal for a bound state S(uuddss)
 absolutely stable if 

● S is special
 spin-0, flavour singlet, CP even, Q=0, B=2, S=-2
 very compact object, almost De Broglie wavelength

● phenomenology
 relatively abundant production in collisions
 expected interaction rate with material very small
 it will look like a soft nuclear interaction
 can look inclusively for events with |ΔB|=2, |ΔS|=2

eg. in upsilon decays with lambda's
or in low-momentum pp collisions

 can attempt to reconstruct the S
interaction on neutron gives KS and Λ0

pointing to material
 very soft signature, no trigger

The SM strikes back: sexaquarks
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Thank you!
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