BSM physics at high energies – an experimental review

XXI LNF Spring School "Bruno Touschek" in Nuclear, Subnuclear and Astroparticle Physics

13-17 May 2024

Prof. Steven Lowette

Vrije Universiteit Brussel – IIHE steven.lowette@cern.ch http://cern.ch/lowette/

About these lectures

Content

- 1st lecture: intro di-X searches dark matter SUSY
- 2nd lecture: BSM Higgs HNLs long-lived particles going beyond

Caveats

- very broad subject, impossible to cover all
 - constantly changing
 - personal bias unavoidable
- very diverse subjects come together here
 - many overlaps no A-Z story
 - attempt to broad picture combined with experimental connection
- stop me if you get lost!
- references

Content Lecture 1

- Introduction
 - the standard model from SM to BSM Top-Down versus Bottom-Up
 - the energy frontier LHC and detectors how to search the data?
- bread and butter resonance searches
 - dilepton and lepton+MET searches
 - dijet searches and beyond
 - diphotons
- dark matter
 - di-invisible → dark matter
 - direct dark matter searches at LHC
 - di-X interplay with dark matter beyond the LHC
- supersymmetry
 - appeal
 - strong production: jets+MET
 - weak production: leptons+MET
 - RPV: multijets

Content Lecture 1

- Introduction
 - the standard model from SM to BSM Top-Down versus Bottom-Up
 - the energy frontier LHC and detectors how to search the data?
- bread and butter resonance searches
 - dilepton and lepton+MET searches
 - dijet searches and beyond
 - diphotons
- dark matter
 - di-invisible → dark matter
 - direct dark matter searches at LHC
 - di-X interplay with dark matter beyond the LHC
- supersymmetry
 - appeal
 - strong production: jets+MET
 - weak production: leptons+MET
 - RPV: multijets

The Standard Model

the standard model is the most successful scientific theory ever

Status: October 2023

Steven Lowette - Vrije Universiteit Brussel LNF Spring School 2024 – BSM at high energies

The Standard Model

• the standard model is the most successful scientific theory ever

Eur.Phys.J.C 78 (2018) 8, 675

Very overconstrained but still internally consistent

Rend.Lincei Sci.Fis.Nat. 34 (2023) 37-57

The Standard Model

• the standard model is the most successful scientific theory ever

Prediction, discovery and confirmation of a fundamental scalar (the Higgs boson) arising from the BEH mechanism with Yukawa couplings to fermions

Beyond the Standard Model?

- experimental evidence for BSM physics
 - gravity
 - neutrino oscillations
 - matter-antimatter asymmetry
 - dark matter *
 -

* all from indirect observations, some with model dependence

- theoretical indications for BSM physics
 - hierarchy problem *
 - why? number of families, number of parameters, gauge group structure *
 - strong CP problem *
 - stability of the EW vacuum *
 - ...

* severity of the problem depends on the theorist

Beyond the Standard Model?

• experimental anomalies

- number of anomalies in B-physics
- number of high-energy anomalies at CMS/ATLAS
- anomalous magnetic moment muon ("g-2")
- W mass
- DAMA/LIBRA dark matter
- reactor and Gallium anomalies
- the Beryllium anomaly
- ...
- all of the above anomalies need confirmation or are even contested
- most of these are actively being researched further
- also many anomalies in astrophysics / cosmology
 - research often links to extensions of the Standard Model

From SM to BSM

• research cycle

- take the SM as the baseline model
- add BSM ingredients to solve one or more problems
- make predictions in new BSM phase space
- test experimentally with existing data, new data, or new experiments
- rince and repeat

potential BSM ingredients

- new particles
- new interactions: portals, mixing,...
- new signatures

potential observables

- high-mass / low-mass resonances
- cross section or branching ratio deviations
- shape deviations / interference
- EFT tests

From SM to BSM

- where to go beyond the SM?
 - high energies limited by colliders' center of mass energies
 - new colored particles new electroweak gauge boson partners new fermions, eg. 4th generation, heavy neutrinos new Higgs bosons
 - ...
 - rare processes limited by luminosity and data-taking capabilities
 - low-mass resonances with large background
 - small couplings
 - Higgs sector
 - rare decays
 - •••
 - unusual processes limited by detectors and our ingenuity
 - invisible signatures long-lived particles unusual charges
 - ...
 - and any combination of the above

- before LHC (LEP, Tevatron), we mostly worked top-down
 - start from a theoretical principle to address SM problems
 - (mostly) fully consistent BSM models
 - huge parameter space
 - Higgs fate not known yet
- searches were often narrow tests of model specifics
 - hard to re-interpret in other contexts
- examples:
 - supersymmetry
 - technicolor
 - little Higgs
 - extra dimensions

- transition to simplified models in 2010 (susy) and 2015 (dark matter)
 - limit to the essence of the BSM aspect of interest
 - focus on experimental signatures
 - easier to re-interpret
 - actually expands the phase space

Simplified Models for LHC New Physics Searches #1 LHC New Physics Working Group • Daniele Alves (SLAC) et al. (May, 2011) #1 Published in: LPhys G 39 (2012) 105005 • e-Print: 1105 2838 [hep-ph] #1							
pdf	ନ links	& DOI	⊡ cite	🗟 claim	ि reference search		
Dark Ma Matter F	tter benchm orum	ark models	for early LH	IC Run-2 Searc	hes: Report of the ATLA	S/CMS Dark #1	
Daniel Ab CIEMAT), Published	ercrombie (M Brandon Alle d in: <i>Phys.Dark</i>	IT), Nural Ak n (MIT) et al. : <i>Univ</i> . 27 (20	churin (Texa (Jul 3, 2015 20) 100371	s Tech.), Ece Akil) • e-Print: 1507.00	li (Geneva U.), Juan Alcara: 0966 [hep-ex]	z Maestre (Madrid,	
🔓 pdf	∂ links	∂ DOI	[→ cite	🗟 claim	🗟 reference search	€ 659 citations € €	

Steven Lowette – Vrije Universiteit Brussel LNF Spring School 2024 – BSM at high energies

- nowadays strong emphasis on Effective Field Theory (EFT)
 - parametrize our ignorance of the full theory at high energies in "effective" low-energy "operators"

$$\mathcal{L}_{\mathrm{eff}} = \mathcal{L}_{\mathrm{SM}} + rac{1}{\Lambda}\sum_i c_i \mathcal{O}_i + rac{1}{\Lambda^2}\sum_j c_j \mathcal{O}_j + \cdots$$

- these operators are non-renormalizable, so they cannot be Lagrangian terms in a fully consistent renormalizable theory that works at all energies
- example: the non-renormalizable Fermi theory with 4-fermion vertices could describe observations because the W mass was at that time still a very high energy scale

- EFT appeal
 - systematically explore how BSM can contribute at low energies

1 at dim. 5 (L violating) , 59 at dim. 6 (assuming gauge invariance and B and L conservation), etc.

- empower SM measurements as tests for BSM
- combine across diversity of analyses

• even truly model-independent sensitivity

High Energy Physics - Experiment

[Submitted on 8 Mar 2023 (v1), last revised 21 Sep 2023 (this version, v2)]

A search for new physics in central exclusive production using the missing mass technique with the CMS detector and the CMS-TOTEM precision proton spectrometer

CMS Collaboration, TOTEM Collaboration

A generic search is presented for the associated production of a Z boson or a photon with an additional unspecified massive particle X, $pp \rightarrow pp + Z/\gamma + X$, in proton-tagged events from proton-proton collisions at $\sqrt{s} = 13$ TeV, recorded in 2017 with the CMS detector and the CMS-TOTEM precision proton spectrometer. The missing mass spectrum is analysed in the 600-1600 GeV range and a fit is performed to search for possible deviations from the background expectation. No significant excess in data with respect to the background predictions has been observed. Model-independent upper limits on the visible production cross section of $pp \rightarrow pp + Z/\gamma + X$ are set.

- hadron colliders reach higher beam energies compared to lepton colliders
 - but the partons within the hadrons which collide have only a fraction of the beam energy
 - leptons carry the full beam energy! and annihilate without debris
- strong progress over several past decades in accelerator performance
 - slowed down in 21st century due to scale of the projects and no real revolution in the technology which is being applied

reality has been even slower!

• the LHC is our current most powerful machine

- the LHC is our current most powerful machine
 - designed to discover the Higgs boson
 - and more: BSM, B-physics, QGP,...
 - first studies 1982 approved 1994 operational since 2009

Proton - Proton	2804 bunch/beam
Protons/bunch	1011
Beam energy	7 TeV (7x10 ¹² eV)
Luminosity	10 ³⁴ cm ⁻² s ⁻¹

Crossing rate 4

40 MHz

Collision rate ≈ 10⁷-10⁹

- the LHC is our current most powerful machine
 - world-record energy
 - huge event rates
- rate = σ L
 - σ cross-section
 - units of barn = 10^{-24} cm²
 - probability for a physics interaction

L – luminosity

measure of density of colliding particles

$$L = \frac{f N_1 N_2}{4 \pi \sigma_x \sigma_y}$$

• units of cm⁻² s⁻¹ or barn⁻¹ s⁻¹:

- the LHC is our current most powerful machine
 - excellent performance!

Detectors at the energy frontier

- number of signal events S in a selected event sample is estimated by subtracting the estimated background B from the total number of events N
 - S = N B

JHEP 08 (2011) 155

- number of signal events S in a selected event sample is estimated by subtracting the estimated background B from the total number of events N
 - S = N B
- statistical uncertainty in the signal estimate $S = \sqrt{N} = \sqrt{(S+B)}$
 - Poisson statistics
 - ignore systematic uncertainties for now
- statistical significance: S / $\sqrt{(S+B)}$

JHEP 08 (2011) 155

- number of signal events S in a selected event sample is estimated by subtracting the estimated background B from the total number of events N
 - S = N B
- statistical uncertainty in the signal estimate $S = \sqrt{N} = \sqrt{(S+B)}$
 - Poisson statistics
 - ignore systematic uncertainties for now
- statistical significance: S / $\sqrt{(S+B)}$
- goal: maximize significance
 - by keeping signal events
 - while suppressing background

Events / 10 GeV CMS 10^{6} √s = 7 TeV $L = 36 \text{ pb}^{-1}$ Data 10⁵ Ζ→νν QCD 10⁴ 10^{3} tī LM1 10^{2} 10 10⁻¹ 10^{-2} 200 600 800 1000 400 ⊮r (GeV)

JHEP 08 (2011) 155

VUB

- goal: maximize significance S / $\sqrt{(S+B)}$
 - by keeping signal events
 - while suppressing background
- simplest case: resonance peak on smooth background
 - fit background using sidebands
 - estimate background in signal region by extrapolating the fit
- more complex
 - counting experiments
 - shape fitting
 - unbinned fit
 - •

- discovery? be careful!
 - global versus local excess → the "look-elsewhere effect"
- when we search eg. a bump in a mass spectrum
 - we run hypothesis tests as a function of mass
 - the more bins we consider, the more we expect statistical fluctuations to show up!
- non-trivial interplay with resolution on the estimated quantity
 - typically this is estimated numerically with pseudo-experiments
- also: 100's of BSM searches at LHC...
- also also: overestimated systematic uncertainties may hide a real signal
- extrordinary claims require extraordinary evidence
 - human judgment stays indispensible

Content Lecture 1

- Introduction
 - the standard model from SM to BSM Top-Down versus Bottom-Up
 - the energy frontier LHC and detectors how to search the data?
- bread and butter resonance searches
 - dilepton and lepton+MET searches
 - dijet searches and beyond
 - diphotons
- dark matter
 - di-invisible → dark matter
 - direct dark matter searches at LHC
 - di-X interplay with dark matter beyond the LHC
- supersymmetry
 - appeal
 - strong production: jets+MET
 - weak production: leptons+MET
 - RPV: multijets

• dilepton searches are a historically winning strategy at high energies

- dilepton searches are a historically winning strategy at high energies
- modern detectors have excellent electron, muon and even tau measurement capabilities

Steven Lowette – Vrije Universiteit Brussel LNF Spring School 2024 – BSM at high energies

- dilepton searches are a historically winning strategy at high energies
- modern detectors have excellent electron, muon and even tau measurement capabilities
 - also for triggering the events

- so let's hunt for new resonances!
 - interpretations in many models think of it as a "heavy, narrow Z"
 - electrons and muons complementary

due to resolution at high energies, backgrounds,...

Phys.Lett.B 796 (2019) 68-87

Steven Lowette – Vrije Universiteit Brussel LNF Spring School 2024 – BSM at high energies

- so let's hunt for new resonances!
 - LHC c.o.m. energy is the driving ingredient
 - → 2010-2011: 7 TeV
 - → 2012: 8 TeV
 - → 2015-2018: 13 TeV
 - → 2022-now: 13.6TeV
 - Iuminosity determines how rare the physics is we can see

- so let's hunt for new resonances!
 - LHC c.o.m. energy is the driving ingredient
 - 2010-2011: 7 TeV \rightarrow
 - 2012: 8 TeV \rightarrow
 - 2015-2018: 13 TeV
 - 2022-now: 13.6TeV \rightarrow

Phys.Lett.B 796 (2019) 68-87

1TeV

- factor 10 in luminosity \rightarrow 1TeV more reach
- if no hint yet... \rightarrow no discovery anywhere soon

- we did the same with charged lepton + neutrino
 - recent example with taus
 - transverse mass instead of invariant mass

JHEP 09 (2023) 051

Steven Lowette – Vrije Universiteit Brussel LNF Spring School 2024 – BSM at high energies

- what if we compare electrons to muons?
 - some important systematics cancel in the ratio → increased sensitivity
 - exciting...?
- it caught some attention because lepton universality may not hold for BSM at high energies
 - Yukawa-type couplings
 - leptoquarks
 - ...

JHEP 07 (2021) 208

Diphoton searches

- diphotons was a discovery channel for the Higgs boson what else?
 - Higgs-like bosons
 - axion-like particles
 - gravitons
 - • • •
- early 2016...

Diphoton searches

- diphotons was a discovery channel for the Higgs boson what else?
- pheno response...

Diphoton searches

- **diphotons** was a discovery channel for the Higgs boson what else?
- at highest masses
 - sensitivity from high LHC energy explored
- at low masses
 - increasing datasets
 - improving analysis techniques
 - hunt for rare BSM hidden in background
- excess at 95GeV...?
 - not significant enough on its own

Dijet searches

- the LHC is a hadron collider
 - hadronic cross sections are largest: large coupling, color factor
- quarks / gluons hadronize
 - sprays of hadrons, photons,... → jets
 - jet energy measurements are less accurate

energy showers

q or g

х

q or g

q or g

Steven Lowette – Vrije Universiteit Brussel LNF Spring School 2024 – BSM at high energies

out-of-cone partons underlying event

in the calorimeters

decays, interactions

field

with material, magnetic

4 Jet n

- the LHC is a hadron collider
 - hadronic cross sections are largest: large coupling, color factor
- quarks / gluons hadronize
 - sprays of hadrons, photons,... → jets
 - jet energy measurements are less accurate
- dijet searches are another standard candle for BSM searches
 - reaches the most energetic collisions ever produced at colliders
 - many models predict production of pair of high-energy jets
 - if we can produce it, then it also decays back
- explored in many past experiments
 - UA1 / UA2 ; CDF / D0 ; LEP

q or g

q or g

х

q or g

q or g

Dijet searches

- backgrounds from strong force with extreme proton energy fraction
- massive energy deposits
- many subtle experimental challenges
 - energy punch-through
 - noise backgrounds
 - tracking inefficiency
 - trigger efficiency
 - ...

JHEP 06 (2020) 151

Dijet searches

• also the lower masses remain interesting!

g

- large backgrounds
- but signal could be large as well
- strategies to reach lower energies
 - "scouting" triggers
 - jet + dijet
 - photon + dijet

q or g

Pairs of dijets?

- imagine an extra intermediate particle
 - tantalizing excess!

JHEP 07 (2023) 161

• also searches for trijets, t-channel, ...

Content Lecture 1

- Introduction
 - the standard model from SM to BSM Top-Down versus Bottom-Up
 - the energy frontier LHC and detectors how to search the data?
- bread and butter resonance searches
 - dilepton and lepton+MET searches
 - dijet searches and beyond
 - diphotons
- dark matter
 - di-invisible → dark matter
 - direct dark matter searches at LHC
 - di-X interplay with dark matter beyond the LHC
- supersymmetry
 - appeal
 - strong production: jets+MET
 - weak production: leptons+MET
 - RPV: multijets

Dark Matter: pairs of ... nothing?

- it's possible we produce particles that don't interact in our detector
 - if very long-lived → dark matter candidate
 - instead of this...:

Dark Matter: pairs of ... nothing?

- it's possible we produce particles that don't interact in our detector
 - if very long-lived → dark matter candidate
 - we see this! "missing energy" (MET)

Dark Matter

- production at colliders can happen if
 - kinematically accessible
 - coupling to quarks/gluons
 - production cross section large enough

Dark Matter

- production at colliders can happen if
 - kinematically accessible
 - coupling to quarks/gluons
 - production cross section large enough

DM from cascade decays

- new particle production decay to DM+X
 - typically pair produced
- example: SUSY
 - with R parity always 2 LSP's yielding MET

Dark Matter

- production at colliders can happen if
 - kinematically accessible
 - coupling to quarks/gluons
 - production cross section large enough

DM from cascade decays

- new particle production decay to DM+X
 - typically pair produced
- example: SUSY
 - with R parity seways 2 LSP's yielding seven

- direct DM pair production through mediator
- but back-to-back DM particles are invisible
 - ISR diagrams provide probe recoiling against DM pair

Steven Lowette – Vrije Universiteit Brussel LNF Spring School 2024 – BSM at high energies

Mediator focus

- the LHC's strength is to produce the mediator on-shell
- we must make the mediator explicit
 - an EFT "blob" is not sufficient

- model description
 - mediator type
 - production mode
 - couplings to q and DM
 - mediator and DM mass
 - consider beyond the minimal

• Monojet search as the poster child example

[•] DM recoils against a jet from QCD ISR

• selection highlights

- MET as sensitive observable cut driven by trigger: MET > 250GeV
 - $e/\mu/\tau$ and b veto \rightarrow suppress top / W
- jets-MET not aligned → suppress QCD
- jet & MET cleaning → suppress instrum. BG
- irreducible $Z \rightarrow vv$ dominant BG
- remarkable precision achieved on BG!
 - ~% in bulk, 10% in tails
 - using constraints from $Z \rightarrow \mu\mu$, $Z \rightarrow ee$, γ +jets, $W \rightarrow \mu\nu$ and $W \rightarrow e\nu$ control regions

• Monojet search as the poster child example

• statistically limited

- improve slowly with luminosity
- systematically limited
 - no low-hanging fruits left
 - improve with hard work
 - challenges and opportunities at higher lumi
- theoretical uncertainties already very well controlled
 - NLO QCD+EWK
 - arXiv:1705.04664

Di-X search interplay with DM

beyond the invisible: link to visible

- LHC sensitivity to DM strongest when producing mediator on-shell
- new mediator may still be probed event if dark matter inaccessible (eg. kinematically) at LHC
 - quark (jet) final states guaranteed
 - muon and electron pairs possibly too
- thus we can indirectly constrain dark matter models
 - constraints on couplings
 - from searches in dijet and dilepton final states
 - model dependency!
 - → always specify all parameters/assumptions

Di-X search interplay with DM

- interpretation in LHC phase space
 - probing mediators to several TeV
 - strong complementarity of invisible and visible channels
- exclusions crucially depend on couplings to SM and DM!

Dark Matter beyond LHC

- translate interpretation in phase space of direct DM detection searches
- take-home message: complementarity
 - best LHC results for low-mass DM, with mediator produced on-shell
- model dependency!

Content Lecture 1

- Introduction
 - the standard model from SM to BSM Top-Down versus Bottom-Up
 - the energy frontier LHC and detectors how to search the data?
- bread and butter resonance searches
 - dilepton and lepton+MET searches
 - dijet searches and beyond
 - diphotons
- dark matter
 - di-invisible → dark matter
 - direct dark matter searches at LHC
 - di-X interplay with dark matter beyond the LHC
- supersymmetry
 - appeal
 - strong production: jets+MET
 - weak production: leptons+MET
 - RPV: multijets

The WIMP miracle

- ...assuming thermal dark matter production...
- ...assuming cold dark matter...
- ...assuming DM to be 1 particle...
- relic dark matter density is inversely proportional to the DM annihilation cross section
 - correct relic density at

 $<\sigma v > ~ 3 \times 10^{-26} \text{ cm}^3 \text{ / s}$

- this is the cross section of a 100 GeV particle with a coupling like the weak interaction
- so cosmology and particle physics points us independently to a special mass scale, the weak scale
 - special role for the Higgs boson?
 - the superesymmetry neutralino?

Supersymmetry

• hierarchy problem: scalar mass sensitive to all scales

- the integral can be cut off at a momentum scale Λ

$$m_h^2 = (m_h^0)^2 + \frac{3\Lambda^2}{8\pi^2 v^2} \left(m_h^2 + 2m_W^2 + m_Z^2 - 4m_t^2 \right)$$

 to cancel this radiative correction up to the Planck scale...

we need to cancel 32 orders of magnitude \rightarrow fine tuning

Supersymmetry

- possible solution: supersymmetry (SUSY):
 add a boson for each fermion, and vice versa
 - scalar quarks and leptons

Names		spin 0	spin $1/2$
squarks, quarks	Q	$(\widetilde{u}_L \ \widetilde{d}_L)$	$\begin{pmatrix} u_L & d_L \end{pmatrix}$
$(\times 3 \text{ families})$	\overline{u}	\widetilde{u}_R^*	u_R^\dagger
	\overline{d}	\widetilde{d}_R^*	d_R^\dagger
sleptons, leptons	L	$(\widetilde{ u} \ \widetilde{e}_L)$	$(u \ e_L)$
$(\times 3 \text{ families})$	\overline{e}	\widetilde{e}_R^*	e_R^\dagger

extended Higgs sector and fermionic superpartners

Names	spin $1/2$	spin 1	
gluino, gluon	\widetilde{g}	g	
winos, W bosons	\widetilde{W}^{\pm} \widetilde{W}^{0}	$W^{\pm} W^0$	
bino, B boson	\widetilde{B}^0	B^0	

majorana fermions as gauge boson partners ("-inos")

Names		spin	n 0	spin	1/2
Higgs, higgsinos	H_u	$(H_u^+$	$H^0_u)$	$(\widetilde{H}_u^+$	$\widetilde{H}_{u}^{0})$
	H_d	(H^0_d)	H_d^-)	$(\widetilde{H}^0_d$	$\widetilde{H}_d^-)$

- mixing between bino, winos and Higgsinos \rightarrow charginos and neutralinos
- no SUSY at same masses observed \rightarrow no perfect cancellation
 - to save naturalneess and avoid new fine tuning:

higgsino ~ 100 GeV stop ~ 400 GeV

gluino ~ 2000 GeV

Supersymmetry appeal

VUB

- hierarchy problem
- unification of the forces
- EW symmetry breaking can be a natural consequence of SUSY breaking
 - under certain conditions in the Higgs sector
- dark matter
 - gravitational evidence is overwhelming
 - SUSY can provide an ideal WIMP
 - note: dark matter is not a requirement put on SUSY models
 - it's the reverse: require proton stability through conservation of R parity
 - → SUSY particles must come in pairs
 - \rightarrow the lightest SUSY particle is stable
- string theory requires SUSY
 - but no indication at what energy scale

 $P_R = (-1)^{2s+3B+L}$

- collider cross sections can be quite large
- current LHC energy and luminosity probes natural SUSY directly

• SUSY can still hide in experimentally difficult decays

- high cross sections for strong production of heavy squarks and gluinos
 - the squarks and gluinos then decay depending on the SUSY spectrum of lighter sparticles
 - but since they are coloured, they will always produce quarks or gluons (jets)
 - and the LSP will always give rise to undetected momentum in the detector
 - generic feature: missing energy + jets + possible leptons/photons/...

- small cross sections for electroweak production of charginos, neutralinos, and sleptons
 - Z's and W's appear in the decays, or leptons directly from the sleptons → can be used to suppress backgrounds
 - depending on spectrum configurations, final states arise with 2, 3, 4 leptons, with or without Z resonances, same charge or not, same flavour or not
 - generic feature: leptons + MET, but absence of jets
- also Higgs bosons can appear in the decays!

a particularly SUSY-like signature are same-charge lepton pairs

- many 10's of searches, years of work, no hints of SUSY
 - maybe nature chose something else than these classic signatures?

ATLAS Preliminary

 $\sqrt{s} = 13 \text{ TeV}$

• current experimental situation

ATLAS SUSY Searches* - 95% CL Lower Limits August 2023

	Model	Signature	∫ <i>L dt</i> [fb ⁻	Mass limit		Reference
S	$\tilde{q}\tilde{q}, \tilde{q} \rightarrow q \tilde{\chi}_1^0$	$\begin{array}{ccc} 0 \ e, \mu & 2-6 \ { m jets} & E_T^m \\ { m mono-jet} & 1-3 \ { m jets} & E_T^m \end{array}$	^{iss} 140 ^{iss} 140	 <i>q</i> [1×, 8× Degen.] <i>q</i> [8× Degen.] 	1.0 1.85 $m(\tilde{\chi}_1^0) < 400 \text{ GeV}$ 0.9 $m(\tilde{q}) \cdot m(\tilde{\chi}_1^0) = 5 \text{ GeV}$	2010.14293 2102.10874
Inclusive Searche	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}\tilde{\chi}_1^0$	0 e, μ 2-6 jets E_T^{in}	^{iss} 140	ğ ğ Fo	$\begin{array}{ccc} \textbf{2.3} & m(\tilde{\xi}_1^0){=}0 \text{ GeV} \\ \textbf{1.15-1.95} & m(\tilde{\xi}_1^0){=}1000 \text{ GeV} \end{array}$	2010.14293 2010.14293
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}W\tilde{\chi}_{1}^{0}$	1 e, µ 2-6 jets	140	ĝ	2.2 $m(\tilde{\chi}_{\pm}^{0}) < 600 \text{ GeV}$	2101.01629
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}(\ell \ell)\tilde{\chi}^0_1$	$ee, \mu\mu$ 2 jets E_T^m	¹⁵⁵ 140	- ĝ	2.2 m($\tilde{\chi}_1^0$)<700 GeV	2204.13072
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow qqWZ\chi_1^-$	$SS e, \mu$ 6 jets E_T^{-11}	140	g ğ	1.97 $m(\tilde{\chi}_1) < 600 \text{ GeV}$ 1.15 $m(\tilde{\chi}_1) = 200 \text{ GeV}$	2008.06032 2307.01094
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow t t \tilde{\chi}_1^0$	$\begin{array}{ccc} \text{0-1 } e, \mu & \text{3 } b & E_T^{\text{ff}} \\ \text{SS } e, \mu & \text{6 jets} \end{array}$	^{iss} 140 140	$\tilde{\tilde{g}}$ $\tilde{\tilde{g}}$	2.45 m($\tilde{\chi}_1^0)$ <500 GeV 1.25 m(\tilde{g})-m($\tilde{\chi}_1^0$)=300 GeV	2211.08028 1909.08457
	$\tilde{b}_1 \tilde{b}_1$	$0 e, \mu$ $2 b E_T^m$	^{iss} 140	$ \tilde{b}_1 \\ \tilde{b}_1 \\ 0.68 $	1.255 m(\tilde{k}_{1}^{0})<400 GeV 10 GeV<Δm(\tilde{b}_{1} , \tilde{k}_{1}^{0})<20 GeV	2101.12527 2101.12527
arks tion	$\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{\chi}_2^0 \rightarrow b h \tilde{\chi}_1^0$	$\begin{array}{cccc} 0 \ e, \mu & 6 \ b & E_T^m \\ 2 \ \tau & 2 \ b & E_T^m \end{array}$	^{iss} 140 ^{iss} 140	b1 Forbidden b1 0.13-0.	$\begin{array}{c} \textbf{0.23-1.35} \\ \textbf{.85} \\ \end{array} \qquad \begin{array}{c} \Delta m(\tilde{\chi}_2^0, \tilde{\chi}_1^0) \!=\! 130 \text{GeV}, m(\tilde{\chi}_1^0) \!=\! 100 \text{GeV} \\ \Delta m(\tilde{\chi}_2^0, \tilde{\chi}_1^0) \!=\! 130 \text{GeV}, m(\tilde{\chi}_1^0) \!=\! 0 \text{GeV} \end{array}$	1908.03122 2103.08189
onp	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow t \tilde{\chi}_1^0$	0-1 $e, \mu \ge 1$ jet $E_T^{\mathfrak{m}}$	^{iss} 140	Ĩ1	1.25 $m(\tilde{\chi}_1^0)=1 \text{ GeV}$	2004.14060, 2012.03799
pro	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow W b \tilde{\chi}_1^0$	$1 e, \mu$ 3 jets/1 b $E_T^{\rm m}$	iss 140	ĩı Forbidden	1.05 $m(\tilde{\chi}_1^0)=500 \text{ GeV}$	2012.03799, ATLAS-CONF-2023-043
ge ect	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow \tilde{\tau}_1 b \nu, \tilde{\tau}_1 \rightarrow \tau G$	$1-2\tau$ 2 jets/1 b $E_T^{\rm m}$	iss 26.1	tı Forbidder	$m(\tilde{\tau}_1)=800 \text{ GeV}$	2108.07665
dir dir	$r_1r_1, r_1 \rightarrow c x_1 / c c, c \rightarrow c x_1$	$0 e, \mu$ mono-jet E_T^{fr}	iss 140	τ ₁ 0.55	$m(\tilde{t}_1,\tilde{c})-m(\tilde{\chi}_1^0)=5 \text{ GeV}$	2102.10874
	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow t \tilde{\chi}_2^0, \tilde{\chi}_2^0 \rightarrow Z/h \tilde{\chi}_1^0$	1-2 e, μ 1-4 $b = E_T^{m}$	^{iss} 140	\tilde{t}_1	0.067-1.18 m($\tilde{\chi}_2^0$)=500 GeV	2006.05880
	$\tilde{t}_2 \tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + Z$	$3 e, \mu$ $1 b E_T^{tr}$	^{iss} 140	ĩ ₂ Forbidden 0 .	.86 $m(\tilde{\chi}_1^0)$ =360 GeV, $m(\tilde{r}_1)$ - $m(\tilde{\chi}_1^0)$ = 40 GeV	2006.05880
	$ ilde{\chi}_1^{\pm} ilde{\chi}_2^0$ via WZ	$\begin{array}{ccc} \text{Multiple } \ell/\text{jets} & & E_T^n\\ ee, \mu\mu & \geq 1 \text{ jet} & & E_T^n \end{array}$	^{iss} 140 ^{iss} 140	$ \tilde{\chi}_{1}^{\pm}/\tilde{\chi}_{0}^{0} $ $ \tilde{\chi}_{1}^{\pm}/\tilde{\chi}_{2}^{0} $ 0.205	0.96 $m(\tilde{\chi}_1^0)=0$, wino-bino $m(\tilde{\chi}_1^0)=5$ GeV, wino-bino	2106.01676, 2108.07586 1911.12606
	$\tilde{\chi}_{1}^{\pm}\tilde{\chi}_{1}^{\mp}$ via WW	$2 e, \mu = E_T^{\pi}$	^{iss} 140	$\tilde{\chi}_{1}^{\pm}$ 0.42	$m(\tilde{\chi}_1^0)=0$, wino-bino	1908.08215
	$\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ via Wh	Multiple ℓ /jets $E_T^{\rm ff}$	^{iss} 140	$\tilde{\chi}_1^x/\tilde{\chi}_2^o$ Forbidden	1.06 $m(\tilde{\chi}_1^0)=70 \text{ GeV}, \text{ wino-bino}$	2004.10894, 2108.07586
5 <	$\chi_1 \chi_1$ via $\ell_L / \bar{\nu}$	$2e,\mu$ E_T^n	iss 140	\tilde{x}_1 \tilde{z}_1 \tilde{z}_2 0.24 0.49	1.0 $m(\ell, \tilde{v})=0.5(m(\chi_1^-)+m(\chi_1^-))$	1908.08215 ATLAS CONE 2022 020
EV lire	$\tau \tau, \tau \rightarrow \tau \chi_1$ $\tilde{\ell}_1 p \tilde{\ell}_1 p \tilde{\ell} \rightarrow \ell \tilde{\chi}_1^0$	$2e_{\mu}$ 0 jets E_{T}^{m}	iss 140	<i>i</i> 0.34 0.46	$m(x_1)=0$ $m(\tilde{x}_1^0)=0$	1908.08215
0	L,RoL,R, C FOU	$ee, \mu\mu \ge 1$ jet E_T^{h}	^{iss} 140	<i>t</i> 0.26	$m(\tilde{\ell})-m(\tilde{\chi}_1^0)=10 \text{ GeV}$	1911.12606
	$\tilde{H}\tilde{H}, \tilde{H} \rightarrow h\tilde{G}/Z\tilde{G}$	$0 e, \mu \ge 3 b E_T^{T}$	iss 140	Ĩ.	0.94 BR $(\tilde{\chi}^0_i \rightarrow h\tilde{G})$ =1	To appear
		$0 \ e, \mu \ge 2$ large jets E_T^{fr}	^{iss} 140	\tilde{H} 0.55 \tilde{H} 0.45	5-0.93 BR $(\tilde{x}_1^0 \rightarrow Z\tilde{G})=1$	2103.11084 2108.07586
		$2 e, \mu \ge 2 \text{ jets} E_T^n$	^{iss} 140	<i>H</i> 0.77	$BR(\tilde{\chi}^0_1 \to Z\tilde{G}) = BR(\tilde{\chi}^0_1 \to h\tilde{G}) = 0.5$	2204.13072
ъ.,	$Direct \tilde{\chi}_1^* \tilde{\chi}_1^- \text{ prod., long-lived } \tilde{\chi}_1^\pm$	Disapp. trk 1 jet E_T^m	^{iss} 140		Pure Wino Pure higgsino	2201.02472 2201.02472
ive	Stable \tilde{g} R-hadron	pixel dE/dx E_T^m	^{iss} 140	<i>ğ</i>	2.05	2205.06013
l-la	Metastable \tilde{g} R-hadron, $\tilde{g} \rightarrow qq \tilde{\chi}_1^0$	pixel dE/dx E _T ^m	^{iss} 140	$\tilde{g} = [\tau(\tilde{g}) = 10 \text{ ns}]$	2.2 m($\tilde{\chi}_1^0$)=100 GeV	2205.06013
pa	$\tilde{\ell}\tilde{\ell}, \tilde{\ell} \rightarrow \ell\tilde{G}$	Displ. lep E_T^n	¹⁵⁵ 140	ē, μ 0.7	$\tau(\tilde{\ell}) = 0.1 \text{ ns}$ $\tau(\tilde{\ell}) = 0.1 \text{ ns}$	2011.07812
		pixel dE/dx E_T^{tt}	^{iss} 140	τ̃ 0.36	$\tau(\ell) = 10$ ns	2205.06013
	$\tilde{\chi}_{1}^{\pm}\tilde{\chi}_{1}^{\mp}/\tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{\pm} \rightarrow Z\ell \rightarrow \ell\ell\ell$	3 <i>e</i> , <i>µ</i>	140	$\tilde{\chi}_{1}^{\mp}/\tilde{\chi}_{1}^{0}$ [BR($Z\tau$)=1, BR(Ze)=1] 0.625	1.05 Pure Wino	2011.10543
	$\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp} / \tilde{\chi}_2^0 \rightarrow WW/Z\ell\ell\ell\ell\nu\nu$	4 e, μ 0 jets E_T^{n}	^{1SS} 140	$\tilde{\chi}_{1}^{\pm}/\tilde{\chi}_{2}^{0} = [\lambda_{i33} \neq 0, \lambda_{12k} \neq 0]$	0.95 1.55 $m(\tilde{\chi}_1^0)=200 \text{ GeV}$	2103.11684
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow qq\chi_1, \chi_1 \rightarrow qqq$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow qq\chi_1, \chi_1 \rightarrow qqq$	≥o jets Multiple	140	$\tilde{g} = [m(\chi_1)=50 \text{ GeV}, 1250 \text{ GeV}]$ $\tilde{t} = [\lambda''] = 2e-4 + 1e-2]$	1.6 2.25 Large A ₁₁₂	ATLAS CONE 2018 002
RPV	$\begin{array}{ccc} II, I \rightarrow \mathcal{U}_1, \mathcal{X}_1 \rightarrow IDS \\ \tilde{II} & \tilde{I} \rightarrow \tilde{D} \tilde{Y}^{\pm} & \tilde{Y}^{\pm} \rightarrow bhs \end{array}$	> 4b	140	i Paga Lo I, Io L, Entriden	0.95 $m(\tilde{\chi}_1^+)=500 \text{ GeV}$	2010.01015
	$\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow bs$	2 jets + 2 b	36.7	$\tilde{t}_1 \ [qq, bs]$ 0.42 0.61		1710.07171
	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow q\ell$	2 e, µ 2 b	36.1	\tilde{t}_1	0.4-1.45 BR(<i>i</i> ₁ → <i>be</i> / <i>b</i> µ)>20%	1710.05544
	$\tilde{\chi}_{1}^{\pm}/\tilde{\chi}_{2}^{0}/\tilde{\chi}_{1}^{0}$ $\tilde{v}^{0} \rightarrow ths \tilde{\chi}_{1}^{+} \rightarrow bhs$	1-2 ε μ >6 iets	130	\tilde{v}^0 0.2-0.32	1.0 $\operatorname{Dri}(t_1 \rightarrow q\mu) = 100\%, \operatorname{COS}(t_1 = 1)$	2106.09609
	~1/~2/~1, X _{1,2} ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	, μ 0 ,013	140	A1 0.2-0.02		2100.03003
*Only a selection of the available mass limits on new states or 10^{-1} 1 Mass scale ITeVI						
the late of the second	a second a second secon	transition and the second second				

*Only a selection of the available mass limits on new states or phenomena is shown. Many of the limits are based on simplified models, c.f. refs. for the assumptions made.

Steven Lowette – Vrije Universiteit Brussel LNF Spring School 2024 – BSM at high energies

- zooming in on gluino and stop searches
 - drivers of the fine-tuning tests

- · limits from direct searches are now very stringent
 - fine tuning seems inevitable
 - simple low-mass SUSY solutions losing traction

Content Lecture 1

- Introduction
 - the standard model from SM to BSM Top-Down versus Bottom-Up
 - the energy frontier LHC and detectors how to search the data?
- bread and butter resonance searches
 - dilepton and lepton+MET searches
 - dijet searches and beyond
 - diphotons
- dark matter
 - di-invisible → dark matter
 - direct dark matter searches at LHC
 - di-X interplay with dark matter beyond the LHC
- supersymmetry
 - appeal
 - strong production: jets+MET
 - weak production: leptons+MET
 - RPV: multijets

