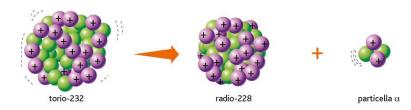


LHCb Masterclass 2024 - Genova


Misura della vita media del D^{0} a LHCb

18 Marzo 2024

Esercizio di oggi

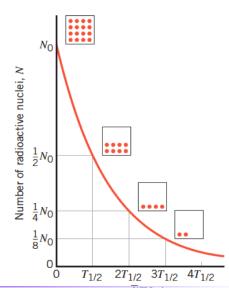
- Userete un campione di dati reali raccolti dall'esperimento LHCb nelle collisioni tra protoni all'acceleratore LHC
- Cercherete in questi dati una particella di nome D^0 : siccome la particella D^0 vive poco dovrete trovare tra le tante tracce prodotte dallo scontro dei protoni di LHC quelle dei prodotti di decadimento che formano un D^0 o un anti- D^0
- In base alla massa misurata per il D^0 dovrete distinguere gli eventi di veri D^0 da quelli di "fondo" che sono dati da combinazioni casuali di particelle che in realtà non provengono da un D^0
- Misurerete quindi una proprietà di questa particella: la vita media
- ullet La particella D^0 è un mesone elettricamente neutro, prodotto molto abbondantemente a LHC
- Viene studiato per la ricerca di differenza tra materia e anti-materia

- Molte particelle (composte dai quark che abbiamo visto prima) sono instabili
- Dopo un certo intervallo di tempo decadono in altre particelle
- Per esempio, voi conoscete i decadimenti radioattivi dei nuclei?

Il tempo di decadimento

- Conoscere il momento esatto in cui un singolo nucleo radioattivo decade, cioè si disintegra non può essere previsto da nessuna legge fisica
- I decadimenti dei singoli nuclei avvengono in maniera casuale
- Quello che sappiamo è che il numero di nuclei che decadono al passare del tempo diminuisce esponenzialmente

Il tempo di decadimento

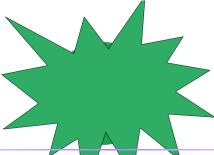

• Possiamo calcolare il numero di nuclei N(t) ad un certo istante di tempo t conoscendo quanti nuclei, N_0 , che avevamo all'istante t=0

$$N(t) = N_o \exp^{-\frac{t}{\tau}}$$

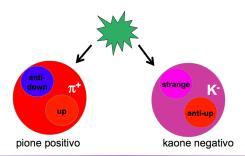
dove au è la vita media

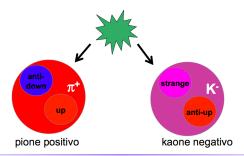
• Possiamo definire un tempo, detto tempo di dimezzamento $T_{\frac{1}{2}}$ come il tempo dopo il quale la metà dei nuclei è decaduta

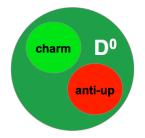
$$T_{\frac{1}{2}} = \ln 2 \times \tau = 0.693 \times \tau$$



- ullet Oggi misureremo la vita media di una particella neutra: il mesone D^0
- Il D^0 è costituito da un quark anti-up e un quark charm
- È una particella instabile e dopo un certo tempo decade
- In un kaone negativo (K^-) e un pione positivo (π^+)
- L'antiparticella, l'anti- D^0 decade in un kaone positivo K^+ e in un pione negativo π^-

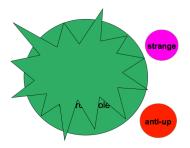

- ullet Oggi misureremo la vita media di una particella neutra: il mesone D^0
- ullet Il D^0 è costituito da un quark anti-up e un quark charm
- È una particella instabile e dopo un certo tempo decade
- In un kaone negativo (K^-) e un pione positivo (π^+)
- \bullet L'antiparticella, l'anti- D^0 decade in un kaone positivo K^+ e in un pione negativo π^-

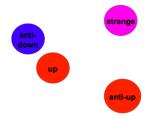

- ullet Oggi misureremo la vita media di una particella neutra: il mesone D^0
- ullet Il D^0 è costituito da un quark anti-up e un quark charm
- È una particella instabile e dopo un certo tempo decade
- In un kaone negativo (K^-) e un pione positivo (π^+)
- L'antiparticella, l'anti- D^0 decade in un kaone positivo K^+ e in un pione negativo π^-

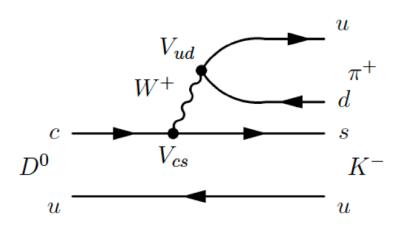


- ullet Oggi misureremo la vita media di una particella neutra: il mesone D^0
- ullet Il D^0 è costituito da un quark anti-up e un quark charm
- È una particella instabile e dopo un certo tempo decade
- In un kaone negativo (K^-) e un pione positivo (π^+)
- L'antiparticella, l'anti- D^0 decade in un kaone positivo K^+ e in un pione negativo π^-

- ullet Oggi misureremo la vita media di una particella neutra: il mesone D^0
- ullet Il D^0 è costituito da un quark anti-up e un quark charm
- È una particella instabile e dopo un certo tempo decade
- In un kaone negativo (K^-) e un pione positivo (π^+)
- \bullet L'antiparticella, l'anti- D^0 decade in un kaone positivo K^+ e in un pione negativo π^-







Nel nostro linguaggio di fisici

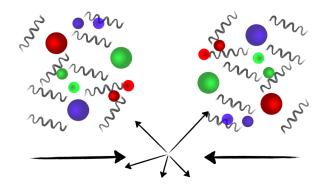


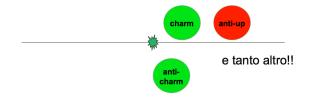
Quanto tempo ci mette a decadere?

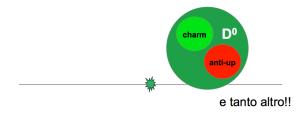
 $\bullet\,$ Il range delle vite medie è enorme: la vita del D^0 è piuttosto piccola

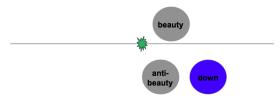
Туре	Name	Symbol	Energy (MeV)	Mean lifetime
Lepton	Electron / Positron	e^{-}/e^{+}	0.511	$> 4.6 \times 10^{26} \text{ years}$
	Muon / Antimuon	μ^{-}/μ^{+}	105.7	2.2×10^{-6} seconds
	Tau lepton / Antitau	τ^-/τ^+	1777	$2.9 \times 10^{-13} \text{ seconds}$
Meson	Neutral Pion	π^0	135	$8.4 \times 10^{-17} \text{ seconds}$
	Charged Pion	π^{+} / π^{-}	139.6	2.6×10^{-8} seconds
Baryon	Proton / Antiproton	p^{+} / p^{-}	938.2	$> 10^{29} { m years}$
	Neutron / Antineutron	n/\bar{n}	939.6	885.7 seconds
Boson	W boson	W^{+}/W^{-}	80,400	10^{-25} seconds
	Z boson	Z^0	91,000	10^{-25} seconds

- \bullet Per misurare la vita media del D^0 dobbiamo rivelarli, vedremo fra un po' come si fa
- Ma prima di cercarli dobbiamo capire come sono prodotti

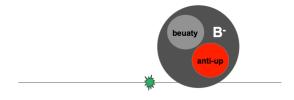

- \bullet Per misurare la vita media del D^0 dobbiamo rivelarli, vedremo fra un po' come si fa
- Ma prima di cercarli dobbiamo capire come sono prodotti


- \bullet Per misurare la vita media del D^0 dobbiamo rivelarli, vedremo fra un po' come si fa
- Ma prima di cercarli dobbiamo capire come sono prodotti


- \bullet Per misurare la vita media del D^0 dobbiamo rivelarli, vedremo fra un po' come si fa
- Ma prima di cercarli dobbiamo capire come sono prodotti


- \bullet Per misurare la vita media del D^0 dobbiamo rivelarli, vedremo fra un po' come si fa
- Ma prima di cercarli dobbiamo capire come sono prodotti

- \bullet Per misurare la vita media del D^0 dobbiamo rivelarli, vedremo fra un po' come si fa
- Ma prima di cercarli dobbiamo capire come sono prodotti



- \bullet Per misurare la vita media del D^0 dobbiamo rivelarli, vedremo fra un po' come si fa
- Ma prima di cercarli dobbiamo capire come sono prodotti

Ma puo' anche succedere questo!

- \bullet Per misurare la vita media del D^0 dobbiamo rivelarli, vedremo fra un po' come si fa
- Ma prima di cercarli dobbiamo capire come sono prodotti

 \dots dalla interazione protone-protone si produce una particella chiamata $B\dots$

- \bullet Per misurare la vita media del D^0 dobbiamo rivelarli, vedremo fra un po' come si fa
- Ma prima di cercarli dobbiamo capire come sono prodotti

... che dopo un po' decade ...

- \bullet Per misurare la vita media del D^0 dobbiamo rivelarli, vedremo fra un po' come si fa
- Ma prima di cercarli dobbiamo capire come sono prodotti

- \bullet Per misurare la vita media del D^0 dobbiamo rivelarli, vedremo fra un po' come si fa
- Ma prima di cercarli dobbiamo capire come sono prodotti

 \dots nel bosone $W^ \dots$

- \bullet Per misurare la vita media del D^0 dobbiamo rivelarli, vedremo fra un po' come si fa
- Ma prima di cercarli dobbiamo capire come sono prodotti

+ altro

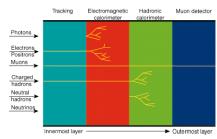
 \dots e si forma così il D^0 !

Riassumendo

Produzione diretta: primary vertex

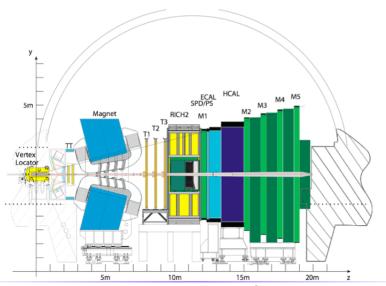
Produzione dal decadimento di una particella B: primary vertex

Come si rivela un D^0 ?

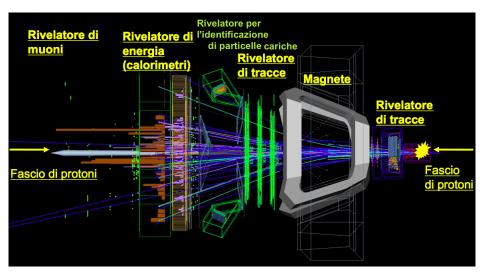

- ullet Il D^0 abbiamo detto decade dopo un certo intervallo di tempo con una vita media brevissima prima di lasciare traccia
- Possiamo quindi rivelare i suoi prodotti di decadimento:

$$D^0 \to K^- \pi^+$$

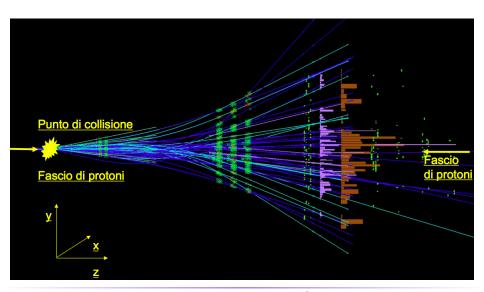
- LHCb ha dei rivelatori dedicati a riconoscere i K^- e i π^+ e a misurarne le caratteristiche che ci interessano
 - Dobbiamo saper riconoscere i K e i π tra le tante tracce prodotte nell'interazione p-p
 - Dobbiamo separare tracce negative e positive: vogliamo le coppie (K^+,π^-) e (K^-,π^+) in modo che la somma delle loro cariche sia neutra come quella del D^0
 - \bullet Dobbiamo selezionare solo il K^- e il π^+ provengono proprio dal D^0

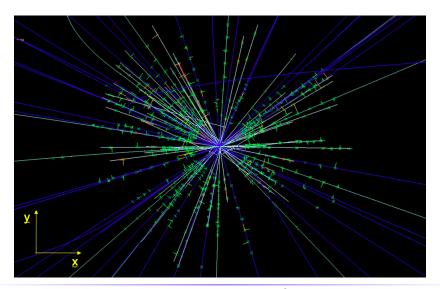

Rivelatori

- Le particelle vengono rivelate e identificate nei rivelatori di particelle, grazie al loro diverso modo di interagire con la materia
- Esistono diversi tipi di rivelatore, ottimizzati per rivelare e misurare tipi diversi di particelle e informazioni fisiche diverse:
 - Carica
 - Direzione
 - Energia
 - Quantità di moto
 - Massa (tipo di particella)



- Un rivelatore di particelle è costituito da più strati, ciascuno in grado di misurare una particolare caratteristica della particella
- In generale un apparato per la fisica delle particelle sfrutta le informazioni di parecchi rivelatori opportimamente combinatia LHCb 18 Marzo 2024
 13


Il rivelatore LHCb


Il rivelatore LHCb

Una collisione a LHCb

Una collisione a LHCb

Come riconosciamo che il K^- e il π^+ provengono proprio dal D^0 ?

CHARMED MESONS

 $\begin{array}{ll} (C=\pm 1) \\ D^+=c \ \overline{d}, D^0=c \ \overline{u}, \overline{D}^0=\overline{c} \ u, D^-=\overline{c} \ d, \text{similarly for } D^*\text{ 's } \\ \hline D^0 & I(J^P)=1/2(0^-) \end{array}$

INSPIRE search

Mini Reviews

$$D^0 - \overline{D}^0$$
 Mixing (rev.)

Listings

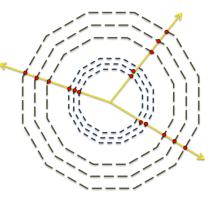
► Expand all sections

D^0 MASS
$m_{D^{\pm}}-m_{D^0}$
D^0 MEAN LIFE
$ m_{D_1^0} - m_{D_2^0} = x \Gamma$
$(\Gamma_{D_1^0} - \Gamma_{D_2^0})/\Gamma = 2y$
q/p
A_{Γ}
$\cos\delta$

$$\begin{array}{c} 4.75 \pm 0.08 \ \text{MeV} \\ \hline \\ (95.^{+41}_{-44}) \times 10^8 \ h \ \text{s}^{-1} \\ 0.0129^{+.0014}_{-0.0018} \\ 0.92^{+0.12}_{-0.09} \\ (-0.125 \pm 0.526) \times 10^{-3} \end{array}$$

 0.97 ± 0.11

 $1864.83 \pm 0.05 \text{ MeV}$


 $m_{D^0} = 1864.3 \pm 0.05 \,\text{MeV} = 3.1 \times 10^{-27} \,\text{Kg}$

Calcolare la massa del D^0

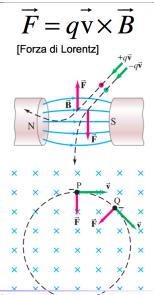
$$m_{D^0}^2 = m_K^2 + m_\pi^2 + 2\sqrt{m_K^2 + |\vec{p}_K|^2}\sqrt{m_\pi^2 + |\vec{p}_\pi|^2} - 2|\vec{p}_K||\vec{p}_\pi|\cos\theta$$

- \bullet La massa del K e del π sono state misurate e sono note in maniera molto precisa
- Le unica quantità incognite sono $|\vec{p}_K|$ e $|\vec{p}_{\pi}|$ e $\cos \theta$. Dobbiamo quindi misurare le quantità di moto delle due particelle.

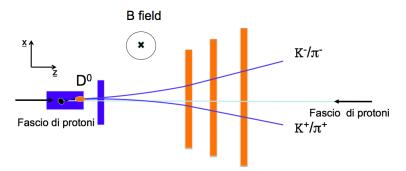
Sistemi traccianti

- Elementi sensibili al passaggio di particelle cariche
- La tecnologia più usata è simile a quella dei sensori delle macchine fotografiche digitali: delle superfici di silicio, tagliuzzate in pixel che danno un segnale al passaggio di una particella carica
- Registrano la posizione delle particelle cariche permettendo di ricostruirne la traccia
- La misura della traccia associata al passaggio di una particella è una cosa buona ma da sola non ci dice molto...

Misura dell'impulso di una particella carica


- Una particella carica che attraversa un campo magnetico è soggetta ad una forza perpendicolare alla direzione della sua velocità e del campo magnetico
- La direzione della forza (e quindi il verso di curvatura) dipende dal segno della carica

Se \vec{v} e \vec{B} sono perpendicolari: F=qvB


$$F = ma \to a = \frac{v^2}{R}$$

$$qvB = m\frac{v^2}{R} \to R = \frac{p}{qB}$$

L'entità della curvatura dipende dalla velocità delle particelle

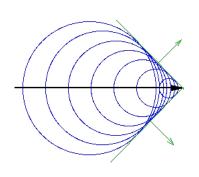
Misurare la quantità di moto a LHCb

- Grazie ai sistemi traccianti
 - o possiamo capire se la particella carica è positiva o negativa
 - dalla curvatura della particella misuriamo la quantità di moto

$$p = qBR$$

Rivelatori a Radiazione Cherenkov

- \bullet Ci permettono di identificare le particelle e quindi di capire se la traccia è un K o un π
- L'effetto Cherenkov consiste nell'emissione di un cono di luce da parte di una particella in moto in un materiale ad una velocità superiore alla velocità della luce nel mezzo attraversato

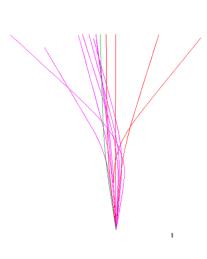

Rivelatori a Radiazione Cherenkov

- È analogo al cono di Mach quando si supera la barriera del suono nell'aria
- Quando un aereo vola ad una velocità superiore a quella del suono in aria produce delle onde d'urto che generano un cono

 Misurando l'angolo del cono di luce si ricava la velocità della particella

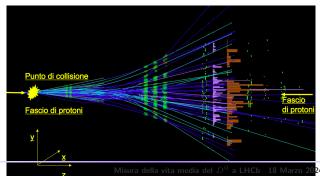
$$\beta = -\frac{1}{c}$$

$$\cos \theta = \frac{1}{n\beta}$$

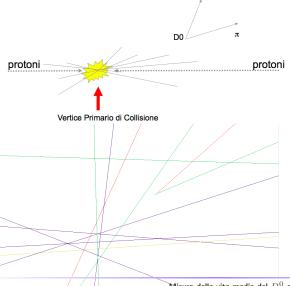

 Se contemporaneamente misuro la quantità di moto posso ricavare la massa della particella

$$m=\frac{p}{v}$$

• Siccome la massa del K è diversa dalla massa del π posso identificare e separare i K dai π


Riassumendo...

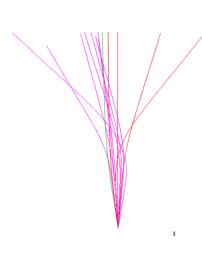
- Abbiamo imparato a misura la quantità di moto delle tracce
- Abbiamo imparato a identificare tracce negative e positive grazie alla curvatura indotta dal campo magnetico
- Sappiamo che il rivelatore LHCb ha dei rivelatori dedicati a riconoscere i K^- e i π^+ che usano la radiazione Cherenkov
- Ora possiamo combinare tutti i K e i π per misurare la massa a partire dall'impulso delle singole tracce e vedere se il valore è quello del D^0



Come si rivela un D^0 ?

- ullet Nell'evento abbiamo tanti K e π
 - Se nell'evento c'è un D^0 avremo che una coppia di K e π proverrà dal D^0 . Chiameremo questi eventi SEGNALE
 - \bullet Ma ci saranno anche tanti K e π prodotti direttamente dall'interazione protone-protone e chiameremo questi eventi FONDO
- Quindi il nostro SEGNALE è nascosto da TANTI eventi di FONDO!
 Non sarà facile trovarlo!

Come distinguiamo il segnale dal fondo?


Esercizio

- Imparerete a selezionare le tracce corrispondenti a kaoni e pioni separando segnale e fondo: negli eventi che analizzerete sono presenti sia segnale, quindi veri decadimenti del $D^0 \to K^+\pi^-$ che fondo cioè finti segnali che hanno caratteristiche simili ma che non sono i veri decadimenti
- Utilizzerete delle funzioni matematiche per descrivere i dati che vi permetteranno di misurare alcune proprietà delle particelle che state osservando tra cui la vita media
- Vi renderete conto delle possibili incertezze che avrete sulla misura

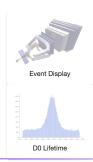
Obiettivi dell'esercizio

• Primo obiettivo: riempire un istogramma con eventi di massa del D^0 , selezionando un K e un π per ogni evento

- Il programma visualizza le tracce ricostruite dopo una interazione protone-protone in LHCb
- Dovete trovare tra tutte le tracce di un evento una coppia $K^-\pi^+$ (o un $K^+\pi^-$) che soddisfino queste caratteristiche:
 - ullet la cui misura degli impulsi quando opportunamente combinata ha un valore di massa prossimo a quello della massa del D^0
 - Il punto in cui le tracce K^- e un π^+ si intersecano (vertice di decadimento) sia distaccato dal vertice primario (quella da cui vengono la maggior parte delle tracce)

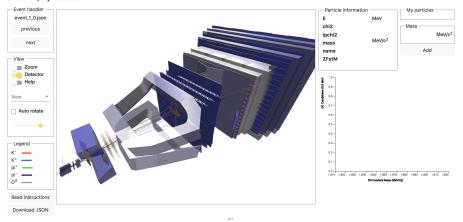
Pronto a partire?

• Collegatevi a https://lhcb-d0.web.cern.ch


- Inserire i propri dati
- Scegliere la combinazione "Combination" (usate il numero della sotto-stanza del meeting)
- Cliccare "Save"
- Scegliere il primo esercizio cliccando sul tasto "Event Display"

Firstname

Surname

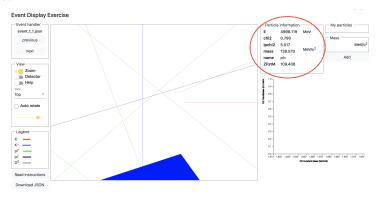

Grade

Combination

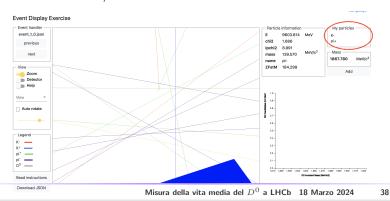
• Si ha un'immagine del rivelatore LHCb e le tracce delle particelle

Event Display Exercise

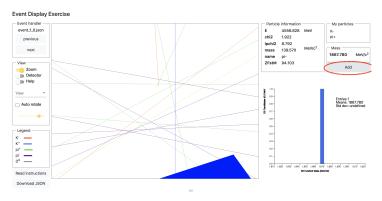
 Le tracce hanno colori diverse a seconda delle particella che le ha prodotte: una legenda in basso a sinistra ti dirà quale colore corrisponde a ciascuna particelle


Event Display Exercise Event handler Particle information My particles event 1 0.ison MoV Mass previous inchi2 MeV/c2 MeV/c² next name Add ZFstM Auto rotate Read instructions Download JSON

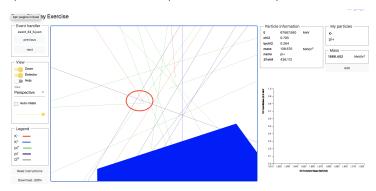
- Puoi zoomare, cambiare vista, ruotare, togliere/mettere il rivelatore
- ullet Per trovare i vertici del D^0 puoi visualizzare l'evento in tre diverse proiezioni bidimensionali (Top/Side/Front), provale tutte perchè ogni evento è diverso e può essere più chiaro in una proiezione piuttosto che in un'altra


Event Display Exercise Event handler Particle information My particles event 1 0.ison chi2 Mass previous ipchi2 MeV/c² MeV/c2 next maee name Add **ZFstM** Detector ☐ Auto rotate Read instructions

Download JSON


 Posizionando il mouse su una traccia verranno visualizzate nel riquadro "Informazioni sulla particella/Particle information" la massa e la quantità di moto

- Una volta individuata la traccia di interesse puoi selezionarla cliccandola con il mouse
- Una volta individuate le due tracce e selezionate le due tracce cliccandole con il mouse, la massa della particella da cui sono decadute verrà calcolata e visualizzata in "Mass/Massa"

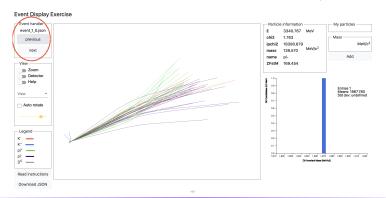


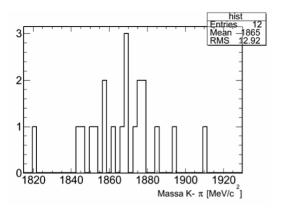
ullet Se pensi che la combinazione di tracce dia una massa compatibile con quella del D^0 premi il pulsante "Add/Aggiungi" per salvare il valore in un istogramma

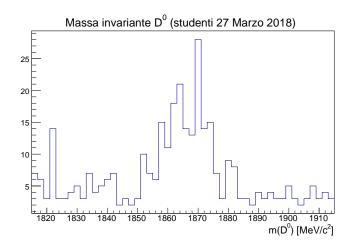
Esempio di evento interessante

Esempio di vertice a due tracce spostato dal vertice primario

Cosa è un istogramma?


- Quando abbiamo riconosciuto molti eventi, li salviamo e facciamo un istogramma della massa, cosa otteniamo?
- E' un grafico formato da rettangoli che serve per visualizzare velocemente una distribuzione di valori in classi.
- Se facciamo n misure di una stessa grandezza, possiamo classificarla in "bin"

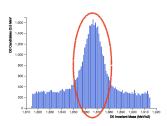

Un bin è un rettangolo del grafico


- Se misuro x = -0.2 aumento di una unità il bin numero "6" all'interno dell'intervallo [-0.5, 0.0]
- L'altezza di un rettangolo 6 rappresenta il numero di volte che la mia misura è all'interno della larghezza della base del bin 6

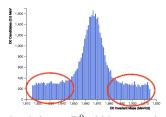
- Ripetere l'operazione per i 30 eventi del tuo campione.
- Per passare all'evento successivo cliccare su "Next/Successivo"
- Per tornare all'evento precedente cliccare su "Previous/Precedente"

 Ripeti l'operazione per i 30 eventi del tuo campione e salva l'istogramma complessivo.

Obiettivi dell'esercizio


- Primo obiettivo: riempire un istogramma con eventi di massa del D^0 , selezionando un K e un π per ogni evento
- Secondo obiettivo: fare il fit della distribuzione di massa del D^0

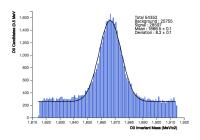
Secondo obiettivo


- A questo punto avete a disposizione un campione di dati maggiori per continuare l'esercizio.
- Questo perchè gli eventi da voi raccolti sono troppo pochi per fare una misura precisa
- Ogni misura ha sempre un errore
- Una regola (non assoluta) è che se uno ha raccolto N eventi di segnale, la precisione relativa sulla misura è $(100/\sqrt{N})\%$
 - 100 eventi significa 10% di precisione
 - ullet 10000 eventi significa 1% di precisione
 - ...
- Dalla schermata iniziale cliccate sul logo " D^0 lifetime"
- Premete il pulsante "Plot D^0 mass/Grafico massa D^0 " per ottenere il grafico della distribuzione di massa

Secondo obiettivo

Picco: SEGNALE

Distribuzione piatta: FONDO



- Abbiamo detto che oltre a coppie (K,π) provenienti da un D^0 abbiamo anche del fondo costituito da tracce che combinate danno una massa simile a quella del D^0 ma non provengono dal D^0
- Per gli eventi di segnale la massa ha valori più frequenti in corrispondenza del valore vero: picco dalla forma a campana centrato sul valore medio
- Per gli eventi di fondo, che derivano da combinazioni casuali di tracce dell'evento, la massa può avere qualunque valore, la sua distribuzione è uniforme

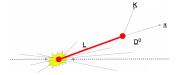
Secondo obiettivo

- Bisogna trovare un modello parametrico e adattarlo (fare un fit) per descrivere le distribuzioni di segnale e fondo
- Segnale = Funzione gaussiana
- Fondo = Funzione lineare (Retta)

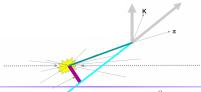
$$G(m) = \frac{1}{\sigma\sqrt{2\pi}} \exp^{-\frac{(\mathbf{D}^0 \text{invariantmass-media})^2}{2\sigma^2}}$$

- La procedura di fit trova il valore dei parametri per i quali il modello parametrico approsima meglio la distribuzione di massa
- I parametri ottenuti dal fit sono riportati sul plot
- In blu è visualizzato il picco di segnale mentre in rosso l'andamento del fondo
- ullet La "media" ci da la misura di massa del D^0

Misure masse D^0

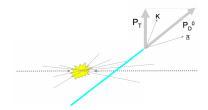

VALUE (MeV)	EVTS	DOCUMENT ID		TECN	COMMENT
1864.83 ± 0.05	OUR FIT				
1864.84 ± 0.05	OUR AVERAGE				
1864.845 ±0.025 ±0.057	63k 1	TOMARADZE	2014		$D^0 ightarrow extit{K}^-$ 2 $\pi^+\pi^-$
1864.75 ±0.15 ±0.11		AAIJ	2013V	LHCB	$D^0 \rightarrow K^+ 2 K^- \pi^+$
$1864.841 \pm 0.048 \pm 0.063$	4.3k 2	LEES	2013S	BABR	$e^+ \; e^-$ at $\Upsilon(4S)$
1865.30 ±0.33 ±0.23	0.1k	ANASHIN	2010A	KEDR	$e^+ \ e^-$ at $\psi(3770)$
1864.847 ±0.150 ±0.095	0.3k	CAWLFIELD	2007	CLEO	$D^0 \to K_S^0 \phi$

Obiettivi dell'esercizio

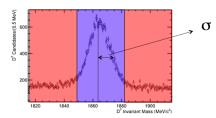

- Primo obiettivo: riempire un istogramma con eventi di massa del D^0 , selezionando un K e un π per ogni evento
- ullet Secondo obiettivo: misurare il valore della massa del D^0
- Terzo obiettivo: ottenere la distribuzione di alcune variabili per gli eventi di segnale e per gli eventi di fondo
 - Le caratteristiche degli eventi che stanno nelle due regioni saranno diverse. Osserveremo nei grafici di alcuni variabili legate all'evento alcune di queste proprietà

Variabili che studieremo

• **D0 TAU**: è il tempo di decadimento della D^0 . Abbiamo detto che la distribuzione segue un andamento esponenziale

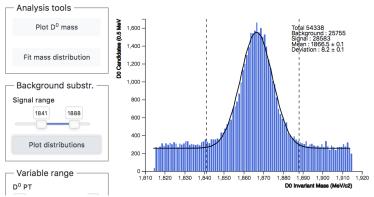


• **D0 IP**: è il parametro di impatto, cioè la distanza della traiettoria della D0 dal punto di interazione protone-protone misurata nel punto di massimo avvicinamento della D0 ad esso.

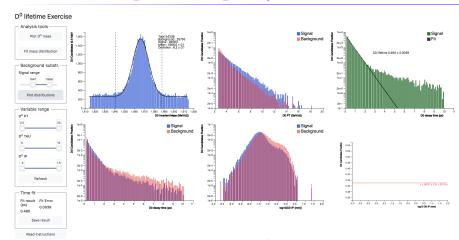


Variabili che studieremo

ullet D0 PT: la componente della quantità di moto del D^0 nel piano trasverso alla linea dei fasci di LHC

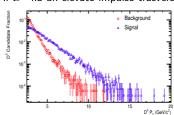

Regioni di segnale/fondo

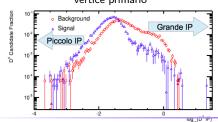
- La distribuzione di massa si può dividere in tre regioni:
 - La regione di segnale al centro, corrispondente al picco e due regioni laterali a destra e a sinistra
 - La regione di segnale può essere definita come 3 volte la larghezza della Gaussiana σ che abbiamo ottenuto dal fit: entro 3σ è contenuto il 99.9% degli eventi

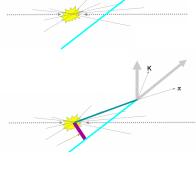

Regioni di segnale/fondo

D⁰ lifetime Exercise

 Usate il cursore "Background substr.-Signal range" per fissare i limiti di questa regione: questi saranno i limiti sulla massa entro cui è contenuto il segnale. I valori esterni a questo intervallo saranno considerati fondo


Regioni di segnale/fondo


- Premere "Plot distributions": vedrai le distribuzioni relative agli eventi di segnale (blu) e fondo (rosso) per le altre variabili
- Le caratteristiche degli eventi che stanno nelle due regioni sono diverse?
 Misura della vita media del D⁰ a LHCb 18 Marzo 2024 55

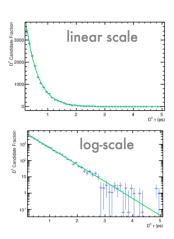

Grafico variabili

Il D^0 proveniente dal vertice primario (dove si scontrano i protoni) ha un piccolo parametro di impatto rispetto al vertice primario

Obiettivi dell'esercizio

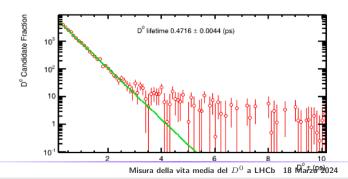
- Primo obiettivo: riempire un istogramma con eventi di massa del D^0 , selezionando un K e un π per ogni evento
- ullet Secondo obiettivo: misurare il valore della massa del D^0
- Terzo obiettivo: ottenere la distribuzione di alcune variabili per gli eventi di segnale e per gli eventi di fondo

Misura della vita media del D^0


$$N(t) = N_0 \exp^{-\frac{t}{\tau}}$$

che sotto forma logaritmica diventa:

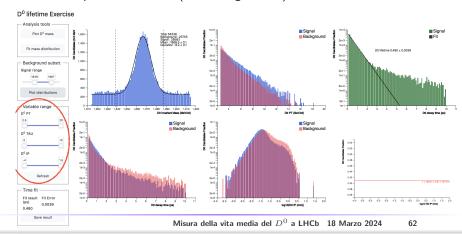
$$\ln(N(t)) = \ln(N_0) - \frac{t}{\tau}$$


$$ln(N(t)) = costante - \frac{t}{\tau}$$

che è una retta con pendenza $-\frac{1}{\tau}$

Misura della vita media del D^0

- Premi il pulsante "Fit tempo decadimento"
- Adattiamo la curva che descrive l'andamento del tempo di decadimento all'istogramma del tempo di decadimento del segnale
- ullet Otteniamo il valore della vita media au
- Confrontiamo il valore con quello del PDG

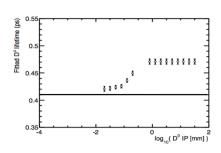


Obiettivi dell'esercizio

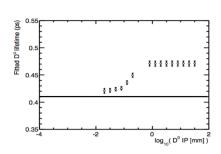
- Primo obiettivo: riempire un istogramma con eventi di massa del D^0 , selezionando un K e un π per ogni evento
- ullet Secondo obiettivo: misurare il valore della massa del D^0
- Terzo obiettivo: ottenere la distribuzione di alcune variabili per gli eventi di segnale e per gli eventi di fondo
- \bullet Quarto obiettivo: misuriamo finalmente la vita media della particella D^0
- Quinto obiettivo: Grafico dell'andamento della vita media in funzione del parametro di impatto

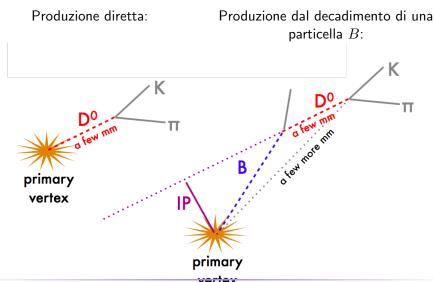
- Abbiamo parlato prima che più dati avete a disposizione più la misura sarà precisa: questa è quella che chiamiamo incertezza statistica
- La vostra misura oltre alle incertezze statistiche possono essere affette anche da errori sistematici per esempio causati da una stima non corretta del fondo
- Un modo per stimare eventuali incertezze sistematiche è ripetere la misura cambiando i criteri usati per la selezione del segnale

- ullet Cercate di minimizzare la quantità di fondo variando i valori accettati per p_T , IP e t (diverse sorgenti di fondo possibili) spostando i cursori in "Variable range"
- Per ogni cambiamento nel "Variable range" cliccate su "Refresh"
- ullet Vi compare il valore per la vita media del D^0 interpolando la distribuzione dei tempi di decadimento (in scala logaritmica) con una retta

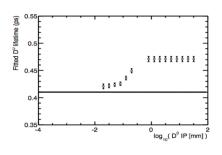


- Per ogni valore salvate il risultato premendo il tasto "Save result"
- Vi aggiungerà un punto nel grafico in basso a destra

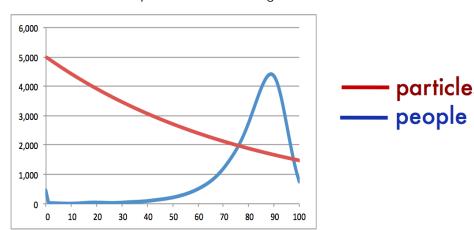



- Provate a rimuovere per esempio gli eventi con parametro di impatto più grande
- Riducete il limite superiore del taglio sul parametro di impatto D0 IP
- Ripetete le operazioni precedenti
- Come è l'andamento?

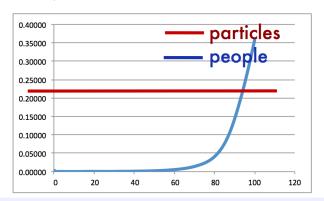
 Rimuovendo gli eventi con parametro di impatto più grande cosa succede?



 Rimuovendo gli eventi con parametro di impatto più grande il valore della vita media diminuisce, perché?


- Rimuovendo gli eventi con parametro di impatto più grande il valore della vita media diminuisce
- Abbiamo rimosso i D^0 che sono decaduti da B^0
- Per questi eventi il tempo misurato è la somma del tempo di decadimento del B più quella del D^0

Spare slides

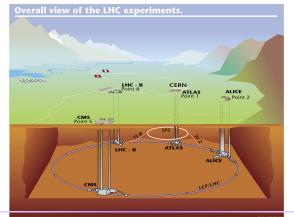

E per gli esseri umani?

 Confrontiamo la distribuzione di decadimento delle particelle con la distribuzione della probabilità di morte degli esseri umani

E per gli esseri umani?

 Probabilità che, data una persona/particella che è sopravvissuta fino ad un'età x, muoia/decada nell'anno successivo

- Le particelle possono decadere ma non invecchiano!
- La forma della distribuzione del tempo di decadimento è una diretta conseguenza di questo


Dove?

• Faremo questa misura all'esperimento LHCb al CERN di Ginevra

LHC

- È il collisore protone-protone a più alta energia nel mondo
- ullet Lunghezza totale $\sim 27\,\mathrm{km}$, profondità $\sim -100\,\mathrm{m}$
- ullet II posto più freddo sulla Terra: $-271\,{}^{0}\mathrm{C}$

