Performance studies of RPC detectors operated with eco-friendly gas mixtures

EP-DT-FS Gas Team

Authors : Giannandrea G., Mandelli B., Guida R., Rigoletti G.

EP-DT Detector Technologies

1

Resistive Plate Chamber Detectors (RPCs)

Widely employed **gaseous detectors** at **CERN LHC** experiments as muon trigger for the excellent time-spatial resolution

CMS

ALICE

Responsible for an important amount of CERN's experiments GHG emissions due to leaks at detector level

EP-DT Detector Technologies 2

RPCs GHG emissions: why bother?

CERN's greenhouse gas emissions (scope 1) are mostly related to the use of various fluorinated gases (F-gases) for particle detection and detector cooling in large LHC experiments. During Run 2 ~85% of GHG emission from particle detectors came from RPCs

EP-DT Detector Technologies **3**

RPCs GHG emissions: how to reduce them?

GHGs are used because of their outstanding properties for good detector operation.

CERN strategies to reduce GHG emissions in particle detection experiments:

Resistive Plate Chamber Detectors

Main detector parameters

Efficiency, currents, cluster size, time resolution, streamers, charge

RPCs exploit **Townsend's** avalanche mechanism due to gas ionization

Resistive Plate Chamber Detectors

Standard Gas Mixture (STD)

Standard Gas Mixture (STD)

Research lines

Istituto Nazionale di Fisica Nuclear

DI PAVIA

European Union Regulations

Starting from 1st January 2015

- Limiting the total amount of the F-gases that can be sold in the EU from 2015 onwards and phasing them down in steps to one-fifth of 2014 sales in 2030.
- Banning the use of F-gases in many new types of equipment where less harmful alternatives are widely available.
- Require regular and certified check controls on leaks for existing equipments.
- Require a recovery of the gases at the end of the equipments life.

Laboratory experimental Set Up

Cosmic Muons

- Gas Mixing Unit : up to 6 different gases
- **3 RPCs** : single gap 2 mm, read out strips 2 cm
- **DAQ** : CAEN digitizer 1730, resolution 0.122 mV/ADC, sampling 500 MS/s
- **Data Analysis**
- Gas Analysis : Gas Chromatograph and Mass Spectrometer

NFN

Experimental Set Up Gamma Irradiation Facility (GIF ++)

SPS Muon Beam

Performance studies under LHC-like conditions

- Gas System
- 3 RPCs of 2 mm single gap
- 2 Scintillators
- 12.5 TBq 137Cs provides gamma irradiation background
- Small replica of the background expected at HL-LHC
- PB filters allow different attenuation factors (ABS)

Experimental Set Up - Gas system

UNIVERSITÀ DI PAVIA

Scheme of the Set up and Data Analysis

UNIVERSITÀ

DI PAVIA

Istituto Nazionale di Fisica Nucleare

EP-DT Detector Technologies ¹⁴

Data Analysis

Main detector parameters

- Avalanche signal : < 10^8 electrons (< 19 pC)
- Streamer signal : > 10^8 electrons (> 19 pC)
- **Cluster size** : the maximum number of adjacent strip hit by the same particle
- **Time resolution** : computed as the difference of the arrival time with respect to the external trigger

Event

Main detector parameters

- Efficiency : the probability of a particle to be detected when hitting the detector
- Streamer Probability : number of detected streamers/number of all detected particles
 - Maximum Efficiency
 - **Knee** of the efficiency curve : voltage value corresponding to 95% of the efficiency max
 - Working Point : knee + 150V
- Cluster Size and Time resolution evaluated at WP

Fit efficiency curve

For each run about 10 voltage point are collected.

The **fit** of the **efficiency curve** is realized with the formula :

$$\epsilon = \frac{\epsilon_{max}}{1 + e^{-\lambda(HV_{eff} - HV_{50})}}$$

- HVeff is the applied voltage
- HV50 is the voltage at 50% efficiency

Investigation of inert gases

DI PAVIA

The aim : check if adding an inert gas could affect detector performance and until what concentration

Investigation of inert gases

- **He** : could be a good alternative, but it can't be used at LHC because it's a problem for PMT in the cavern
- Ne : WP 900 V lower than STD WP, but it has a restricted availability and high market price
- **O2** : good results for WP and SP, but is a comburant. A slow drift trends for current was observed, it could be related to the high number of oxidation reactions when the detector operates at full efficiency

Investigation of inert gases

- N2 : 10% concentration results in 35% of streamers at WP
- N2O : stable performance but WP 300 V higher than STD WP. Difficult to use in higher concentrations
- **CO2** : quencher gas, but it shows a different energy range of photon absorption when compared to i-C4H10 in the RPCs

Tested alternatives to R-134a

Raise CO2 concentration lowering R-134a percentage

Lower Working Point Similar properties to STD gas mixture

Higher currents

Tested alternative to SF6

Different concentrations of

Sulfur hexafluoride (SF_6)

NF

Istituto Nazionale di Fisica Nucleare

NOVEC 4710

Highly electronegative

GWP : 2100

May react with water

EP-DT Detector Technologies 23

Test Beam Results and Analysis R-134a VS HFO

WP : Working Point SP : Streamer Probability

Ī	Standard Gas Mixture 16-07-2022 WP: 9660, SP: 0.03, EffMax: 0.98	
Ť	25% R134a, 69% CO2, 5% iC4H10, 1% SF6 WP: 8710, SP: 0.19, EffMax: 0.96	
¥	25% HFO. 69% CO2. 5% iC4H10. 1% SF6 WP: 10100, SP: 0.23, EffMax: 0.96	

HFO WP 400V higher than STD WP R134a WP 950V lower than STD WP

HFO SP 20% higher than STD SPR134a SP 16% higher than STD SP

Test Beam Results and Analysis R-134a VS HFO

DI PAVIA

- Standard Gas Mixture 16-07-2022
- 25% R134a, 69% CO2, 5% iC4H10, 1% SF6
- 25% HFO, 69% CO2, 5% iC4H10, 1% SF6

At ~500 Hz/cm2 :

HFO current is ~50% higher than **STD** current

R134a current is ~30% higher than STD current

R-134a VS HFO

UNIVERSITÀ

DI PAVIA

Standard Gas Mixture 16-07-2022

25% R134a, 69% CO2, 5% iC4H10, 1% SF6

25% HFO, 69% CO2, 5% iC4H10, 1% SF6

HFO cluster size higher than STD one No good tricking properties at low rate

Gas mixture	Time resolution
Standard	2.05 ns
$25\% \text{ R}134a + 69\% \text{ CO}_2$	1.80 ns
25% HFO + $69%$ CO ₂	1.86 ns

CO2 as alternative to R134a

30% VS 40% Addition of CO2 + 1%SF6

Previous studies conducted by the gas group showed that an increased amount of SF6 up to 0.6% and 0.9% in the CO2 based gas mixture could help to suppress the streamer signals

Here the link of the studies : https://doi.org/10.1016/j.nima.2023.168088

30% VS 40% Addition of CO2

 Standard Gas Mixture 20-10-2022 WP: 9650, SP: 0.0, EffMax: 0.99
 64.5% R134a, 30% CO2, 4.5% iC4H10, 1% SF6 WP: 9490, SP: 0.01, EffMax: 0.98
 54.5% R134a, 40% CO2, 4.5% iC4H10, 1% SF6 WP: 9300, SP: 0.02, EffMax: 0.98

At ~ 400 Hz/cm2 currents are ~ 15% higher than STD current

A reduced amount of CO2 reduces the currents

30% VS 40% Addition of CO2

Test Beam Results and Analysis 30% VS 40% Addition of CO2

Different SF6 concentrations

Ŧ	Standard Gas Mixture WP: 9650, SP: 0.0, EffMax: 0.99
¥	54.5% R134a, 40% CO2, 4.5% iC4H10, 1% SF6 WP: 9300, SP: 0.02, EffMax: 0.98
ě	54% R134a, 40% CO2, 4.5% iC4H10, 1.5% SF6 WP: 9490, SP: 0.02, EffMax: 0.98
Ŧ	53.5% R134a, 40% CO2, 4.5% iC4H10, 2% SF6 WP: 9670, SP: 0.01, EffMax: 0.98

Similar performances than **STD**

Increasing the SF6 concentrations the WP increase

Different SF6 concentrations

Ŧ	Standard Gas Mixture WP: 9650, SP: 0.0, EffMax: 0.99	
4	54.5% R134a, 40% CO2, 4.5% iC4H10, 1% SF6 WP: 9300, SP: 0.02, EffMax: 0.98	
•	54% R134a, 40% CO2, 4.5% iC4H10, 1.5% SF6 WP: 9490, SP: 0.02, EffMax: 0.98	
÷	53.5% R134a, 40% CO2, 4.5% iC4H10, 2% SF6 WP: 9670, SP: 0.01, EffMax: 0.98	

At ~ 400 Hz/cm2 currents are :

- For 1.5% SF6 ~ 10% higher than 1% SF6 current
- For 2% SF6 ~ 15% higher than
 1% SF6 current

EP-DT Detector Technologies ³⁴

Different SF6 concentrations

Similar performances to the ones of the STD gas mixture

Different SF6 concentrations

ł	Standard Gas Mixture WP: 9650, SP: 0.0, EffMax: 0.99	
¥	54.5% R134a, 40% CO2, 4.5% iC4H10, 1% SF6 WP: 9300, SP: 0.02, EffMax: 0.98	
Ŧ	54% R134a, 40% CO2, 4.5% iC4H10, 1.5% SF6 WP: 9490, SP: 0.02, EffMax: 0.98	
Ŧ	53.5% R134a, 40% CO2, 4.5% iC4H10, 2% SF6 WP: 9670, SP: 0.01, EffMax: 0.98	

No significant variation in the charge distribution and streamer signal increasing the SF6 concentration more than 1%

Different SF6 concentrations

Avalanche streamer separation : difference in voltage between the WP and the voltage at which the SP is 10%

Different SF6 concentrations

An **increased** amount of **SF6** could help **suppress the streamer signals**

Replacing SF6 with Novec 4710

Ŧ	Standard Gas Mixture 16-07-2022 WP: 9660, SP: 0.03, EffMax: 0.98
Ŧ	64.9% R134a, 30% CO2, 4.5% iC4H10, 0.6% SF6 WP: 9330, SP: 0.06, EffMax: 0.98
ļ	65.3% R134a, 30% CO2, 4.5% iC4H10, 0.2% NOVEC4710 WP: 9420, SP: 0.21, EffMax: 0.98
÷	64.9% R134a, 30% CO2, 4.5% iC4H10, 0.6% NOVEC4710 WP: 10230, SP: 0.17, EffMax: 0.99

0.2% Novec WP 90V higher than 0.6% SF6 WP

0.6% Novec WP 900V higher than 0.6% SF6 WP

The presence of **Novec increase** the **SP** than **0.6% SF6** SP

Replacing SF6 with Novec 4710

Ŧ	Standard Gas Mixture 16-07-2022 WP: 9660, SP: 0.03, EffMax: 0.98
Ŧ	64.9% R134a, 30% CO2, 4.5% iC4H10, 0.6% SF6 WP: 9330, SP: 0.06, EffMax: 0.98
ļ	65.3% R134a, 30% CO2, 4.5% iC4H10, 0.2% NOVEC4710 WP: 9420, SP: 0.21, EffMax: 0.98
÷	64.9% R134a, 30% CO2, 4.5% iC4H10, 0.6% NOVEC4710 WP: 10230, SP: 0.17, EffMax: 0.99

At ~400 Hz/cm2 :

0.2% Novec similar behaviour than 0.6% SF6

0.6% Novec current is ~25% higher
than 0.6% SF6 current

Replacing SF6 with Novec 4710

Ŧ	Standard Gas Mixture 16-07-2022 WP: 9660, SP: 0.03, EffMax: 0.98
Ŧ	64.9% R134a, 30% CO2, 4.5% iC4H10, 0.6% SF6 WP: 9330, SP: 0.06, EffMax: 0.98
	65.3% R134a, 30% CO2, 4.5% iC4H10, 0.2% NOVEC4710 WP: 9420, SP: 0.21, EffMax: 0.98
ē	64.9% R134a, 30% CO2, 4.5% iC4H10, 0.6% NOVEC4710 WP: 10230, SP: 0.17, EffMax: 0.99

Novec 4710 based gas mixtures show a higher cluster size for this particular RPC tested

Gas mixture	Time resolution
Standard	2.01 ns
$30\% \text{ CO}_2 + 0.6\% SF_6$	1.90 ns
$30\% CO_2 + 0.2\% Novec4710$	2.29 ns
$30\% \text{ CO}_2 + 0.6\% \text{ Novec}4710$	2.14 ns

Conclusions

- HFO + CO2 shows higher Working Point and Currents than R134a + CO2
- 0.2% Novec has good performances and similar to the STD ones
- The increase of Novec concentration leads to the increase of currents
- Novec 4710 may react with water, further investigations are needed

Conclusions

- Lower CO2 concentration shows good performances, allowing to reduce the R134a amount
- More tests were performed with 30% CO2 + 1% SF6 gas mixture and it was selected from the Gas Team and ATLAS group for the aging tests
- Since last month **30% CO2 and 1% SF6 Gas Mixture** has started to be used in **ATLAS RPCs at LHC experiment**

Thank you for your attention

