

Istituto Nazionale di Fisica Nucleare

Status of I-LUCE Jan, 2024

Pablo Cirrone, INFN-LNS

Istituto Nazionale di Fisica Nucleare

lasers and particle acceleration?

3

A laser

High power (TW - PW) Short pulse duration (ps - fs) Intensity > 10¹⁶ W/cm²

A Target:

.

. . .

Thin/thick solid/liquid/gassous

Other useful things

High contrast laser High quality target fabrication High quality wave front-end

3

A laser

High power (TW - PW) Short pulse duration (ps - fs) Intensity > 10¹⁶ W/cm²

A Target:

.

Thin/thick solid/liquid/gassous

Other useful things High contrast laser

High quality target fabrication High quality wave front-end

How Much Pressure Does a PW Laser Exert?

1 PW/1µm spot size corresponds to 10²³ w/cm²

That is the equivalent of the pressure of 10 million Eiffel Towers on the tip of your finger!!

Seriously extreme!

Curtesy of Gerard Morou Ecole Polytechnique (F)

4

A laser

High power (TW - PW) Short pulse duration (ps - fs) Intensity > 10¹⁶ W/cm²

A Target: thin/thick solid/liquid/gassous ...

Other useful things High contrast laser High quality target fabrication High quality wave front-end [many other laser and target parameters]

Laser-solid target interaction for protons, ions acceleration

•Multi species production: g, e-, p, ions

- Emax ~ 10 TV/m
- •Short distance (~µm)

Proton characteristics

High energy: up to ~ 100 MeV Pulse duration \approx 10s fs - 100s ps ppb \approx 108-1011 Broad energy spectra (100%) Wide angular divergence (\approx 10°-20°)

4

A laser

High power (TW - PW) Short pulse duration (ps - fs) Intensity > 10¹⁶ W/cm²

A Target: thin/thick solid/liquid/gassous ...

Other useful things High contrast laser High quality target fabrication High quality wave front-end [many other laser and target parameters]

Laser-solid target interaction for protons, ions acceleration

•Multi species production: g, e-, p, ions

- Emax ~ 10 TV/m
- •Short distance (~µm)

Proton characteristics

High energy: up to ~ 100 MeV Pulse duration \approx 10s fs - 100s ps ppb \approx 108-1011 Broad energy spectra (100%) Wide angular divergence (\approx 10°-20°)

4

A laser

High power (TW - PW) Short pulse duration (ps - fs) Intensity > 10¹⁶ W/cm²

A Target: thin/thick solid/liquid/gassous ... Laser-solid target interaction for protons, ions acceleration

•Multi species production: g, e-, p, ions

- Emax ~ 10 TV/m
- •Short distance (~µm)

Proton characteristics

High energy: up to ~ 100 MeV Pulse duration \approx 10s fs - 100s ps ppb \approx 108-1011 Broad energy spectra (100%) Wide angular divergence (\approx 10°-20°)

Other useful things High contrast laser High quality target fabrication High quality wave front-end [many other laser and target parameters]

Laser Wake Field Acceleration (LWFA) for electrons

7.8 GeV have been reached at the BELLA (Berkeley Lab) in 2019 using two lasers

Laser plasma ion-acceleration current facilities

Laser plasma ion-acceleration current facilities

VULCAN, RAL (UK) Phelix, GSI (De) Texas PW (US)

E_{max}~ 100 MeV

ATON-L4 (ELI Beamlines) 10 PW (1.5kJ/150fs)

I_{max}~ 10²¹ W/cm²

GEMINI, RAL (UK) Draco, HZDR (De) Pulser I, APRI (Kr) J-Karen, JAEA (J)

HAPLS-L3, (ELI Beamlines) 1 PW (30J/30fs/10Hz)

The basic ingredients: an high-power, short-pulse laser

GAP Cirrone, PhD - pablo.cirrone@Infn.it

The basic ingredients: an high-power, short-pulse laser THE NOBEL PRIZE **IN PHYSICS 2018** Center for Relativistic Laser Science 6 Explore the interaction between ultra-intense light and matter South Korea tretcher Oscillato Initial short pulse PW Amp Short-pulse oscillator The pulse is now long and low-power, safe for amplification PW Amp PW Amp **4 PW Beamline 1 PW Beamline** Power ampli A second pair of gratings reverses the dispersion of the first pair and recompresses the pulse.

GAP Cirrone, PhD - pablo.cirrone@Infn.it

2020 world lasers facilities will be the server of the ser

From ICUIL (International Committee on Ultra-High Intensity Lasers) https://www.icuil.org/

Istituto Nazionale di Fisica Nucleare

Let's concentrate on ion acceleration

Laser plasma ion-acceleration physical picture

9

Target Normal Sheath Acceleration

REVIEW PAPERS:

- Macchi, Borghesi, Passoni, Rev. Mod. Phys. 85 (2013) 751
- Borghesi et al, Springer Proc. Phys. 231 (2019) 143

Laser-driven ion acceleration				
from plastic target				
2D particle-in-cell simulation of the interaction of high-intensity laser pur relevant to 13 laser and thus EUMAA beamlined with a micrometer-thick Acceleration of both protons (ainth color) and cathon ons (green color). MeVinueton and 40 MeVinuelcon, respectively, can be being distingui high-anergy protons and lash have a great importance for various from Biology, Medicine, Chemistry, Materials Science, Engineering, and Archa	ise (parameters are k flat plastic target, to makinum energy 150 shed in the visualization as well see applications such Such see see applications in Physics, eology.			
Time: 2 lfs				
carbon energy [MeV/nucleon]	proton energy [MeV/nucleon]			
0.01 0.1 1 10	0.1 1 10 100	0.5 1 2 5	-100	0 100

Role of the ponderomotive force on electrons energy gain

In an oscillating, quasi-monochromatic electromagnetic field described by a vector potential $\mathbf{a}(\mathbf{r},t)$, the relativistic ponderomotive force is given by:

$$f_p = -m_e c^2 \nabla \sqrt{(1 + \langle a \rangle^2)}$$

$$f_p = \frac{dp^s}{dt} = -mc^2 \nabla \gamma$$

Energy Gain: 100 MeV/um (in a plasma medium)!!!

Pablo Cirrone, PhD - pablo.cirrone@lns.infn.it

Laser plasma ion-acceleration physical picture

9

Target Normal Sheath Acceleration

REVIEW PAPERS:

- Macchi, Borghesi, Passoni, Rev. Mod. Phys. 85 (2013) 751
- Borghesi et al, Springer Proc. Phys. 231 (2019) 143

Laser-driven ion acceleration				
from plastic target				
2D particle-in-cell simulation of the interaction of high-intensity laser pur relevant to 13 laser and thus EUMAA beamlined with a micrometer-thick Acceleration of both protons (ainth color) and cathon ons (green color). MeVinueton and 40 MeVinuelcon, respectively, can be being distingui high-anergy protons and lash have a great importance for various from Biology, Medicine, Chemistry, Materials Science, Engineering, and Archa	ise (parameters are k flat plastic target, to makinum energy 150 shed in the visualization as well see applications such Such see see applications in Physics, eology.			
Time: 2 lfs				
carbon energy [MeV/nucleon]	proton energy [MeV/nucleon]			
0.01 0.1 1 10	0.1 1 10 100	0.5 1 2 5	-100	0 100

Role of the ponderomotive force on electrons energy gain

In an oscillating, quasi-monochromatic electromagnetic field described by a vector potential $\mathbf{a}(\mathbf{r},t)$, the relativistic ponderomotive force is given by:

$$f_p = -m_e c^2 \nabla \sqrt{(1 + \langle a \rangle^2)}$$

$$f_p = \frac{dp^s}{dt} = -mc^2 \nabla \gamma$$

Energy Gain: 100 MeV/um (in a plasma medium)!!!

Pablo Cirrone, PhD - pablo.cirrone@lns.infn.it

Maximum proton energy

experimental scaling laws (TNSA)

⊖ 12 ⊗ 🔎

 τ_1 [fs]

650

300

65

45

30

plasma acceleration

1000

 ∞

_ ₩0

Istituto Nazionale di Fisica Nucleare

I-LUCE at INFN-LNS

INFN Laser indUCEd radiation production

Goal: realisation of a new European laser facility for new beams, new physics and new Users

7.9 M€ WP3 High-Power lasers

Infrastructure

Laser system and interaction cham EuPRAXIA

Electrons and ion acceleration

LUC

Advanced technologies for Human Centred Medicine

Anthem

23 Istituti; Spoke 4: Caserta, Pavia, INFN

1.3 M€

Electron acceleration for conventional and ultra high dose rate beams nell'accelerazione di elettroni e UHDR

THALES

N

10

LR

In-air irradiation

station

MAGNEX

Punto Mis

Conventional lons:

from TANDEM and

Cyclotron

Pablo Cirrone, PhD - pablo.cirrone@Ins.infn.it

production

PE/

RE

I-LUCE first phase

16

Two interaction chambers

1) Interaction Chamber n.1: Radiation production (protons/ions, electrons, neutrons, gamma, etc.)

• One in-air irradiation station for multidisciplinary studies

2) Interaction Chamber n.2: Warm Dense Matter studies (WDM)

- Nuclear physics in plasma
- Interaction of conventional ion beams with laser-generated plasma
- Nuclear physics fusion studies in plasma
- •

Two working modalities

Low power: 50 TW/23fs/10Hz
High power: 350 TW/23fs/1Hz

Upgrade from 350 TW to 500 TW (0.5 M€)

Low power modality: 50 TW (LUCE (INFN)

17

Laser Power		≥ 50 TW	
Energy per pulse		≥1J	
Pulse duration		≤ 23 fs	
Focusing surface		36 μm²	
Max power density (at the target) $I^*\lambda^2$		1.21·10 ²⁰ 7.72·10 ¹⁹	
Contrast ratio @100) ps (ASE)	> 10 ¹⁰	
Repetition rate		≥ 10 Hz	
	Max energy	4 MeV	
Protons lons	Particle per pulse (at 2 MeV)	10 ¹¹ MeV ⁻¹ Sr ⁻¹	
Protons lons	Energy spread	100%	
	Beam divergency (max)	±20°	
	Max energy	0.1 GeV	
Eletrons	Particles per pulse	10 ⁹	
	Beam divergency (max)	± 20 mad	
Neutrons	Max energy Particles per pulse Energy spread Beam divergency	TBD	
	Synchrotron radiation of the electrons inside the plasma or breemsstrahlung		
Gamma X-beams	Energy	up to 20 MeV	
	Beam divergency	Directionality in the beam propabgation direction	

Fusion studies, nuclear studies, radioisotopes production,

Acting on the compression procedure, the pulse duration can be increased up to 1/10 ps: ==> $2.78 \cdot 10^{18}$ W/cm² $2.78 \cdot 10^{17}$ W/cm² ==> $i\lambda^2 = 1.77 \cdot 10^{18}$ $i\lambda^2 = 1.77 \cdot 10^{17}$

Longer plasma expansion times:

- Decay studies
- Stopping powers studies
- WDM characterisation

Power densities can be improved reducing the focusing spot: — shorter focusing parabola — but issues related to the: target degree, back reflection, ...

High-power modality: 350 TW (ILUCE (INFN)

18

Laser Power		350 TW	
Energy per pulse		>7 J	
Pulse duration		≤ 25 fs	
Focusing surfa	ce	$36 \ \mu m^2$ or better	
Max power de	nsity (at the target)	8.82 · 10 ²⁰	
Ι*λ ²		5.64 · 10 ²⁰	
Contrast ratio	@100 ps (ASE)	> 10 ¹⁰	
Repetition rate	2	1 Hz	
	Max energy	50 MeV	
Protons Ions	Particle per pulse (at 30 MeV)	10 ¹¹ MeV ⁻¹ Sr ⁻¹	
	Energy spread	100%	
	Beam divergency (max)	±20°	
	Max energy	3 GeV	
Eletrons	Particles per pulse	10 ⁹	
	Beam divergency (max)	± 20 mad	
	Max energy	20 MeV	
Neutrons	Particles per pulse	10 ¹⁰	
	Energy spread	100	
	Beam divergency	Isotropic	
Gamma X-	Synchrotron radiation of the electrons inside the plasma or		
beams	Energy	up to 80 MeV	
	Beam divergency	Directionality in the beam	

Protons spectra from A. Higginson et al. "Near-100 MeV protons via a laserdriven transparency-enhanced hybrid acceleration scheme", NATURE COMMUNICATIONS | (2018) 9:724

Neutrons spectra from A.Yogo et al. "Single shot radiography by a bright source of laser-driven thermal neutrons and x-rays", Applied Physics Express 14, 106001 (2021)

Electrons spectra from X. Wang et al. "Quasi-monoenergetic laser-plasma acceleration of electrons to 2 GeV", NATURE COMMUNICATIONS, 4:1988 2018 DOI: 10.1038/ncomms2988

Istituto Nazionale di Fisica Nucleare

One physics cases at I-LUCE: proton acceleration an transportation Medical and interdisciplinary applications

21

-for radiobiology studies
-for radioisotope production
- ... for hydrogen production
-for cultural heritage applications
- ... for inertial confinement studies

ELIMED/LIMAIA beamline th ELI-Beamlies facility (CZ)

ELIMAIA: A Laser-Driven Ion Accelerator for Multidisciplinary Applications

Daniele Margarone ^{1,*}, G. A. Pablo Cirrone ^{1,2}, Giacomo Cuttone ², Antonio Amico ², Lucio Andò ², Marco Borghesi ³, Stepan S. Bulanov ⁴, Sergei V. Bulanov ¹, Denis Chatain ⁵, Antonín Fajstavr ¹, Lorenzo Giuffrida ¹, Filip Grepl ¹, Satyabrata Kar ³, Josef Krasa ¹, Daniel Kramer ¹, Giuseppina Larosa ², Renata Leanza ², Tadzio Levato ¹, Mario Maggiore ⁶, Lorenzo Manti ⁷, Guliana Milluzzo ^{2,3}, Boris Odlozilik ¹, Veronika Olsovcova ¹, Jean-Paul Perin ⁵, Jan Pipek ², Jan Psikal ¹, Giada Petringa ², Jan Ridky ¹, Francesco Romano ^{2,8}, Bedřich Rus ¹, Antonio Russo ², Francesco Schillaci ^{1,2}, Valentina Scuderi ^{1,2}, Andriy Velyhan ¹, Roberto Versaci ¹, Tuomas Wiste ¹, Martina Zakova ¹ and Georg Korn ¹

MDPI

Can be a high power laser competitive for ion acceleration?

22

1. Enhancing the maximum proton energy and flux

2. Reducing the beam angular divergence or improving the beam homogeneity

Transport and selection system

Target optimization

3. Reducing the ion contamination of the beam

4. Developing new technologies and strategies for diagnostics and dosimetry

ELIMAIA, ELIBEAMLINES (CZ) ULLUCE (INFR

24

ELIMAIA experimental area

30J / 30fs

Protons are emitted from metallic/plastic foils um thickness cut-off energy of up to ~40 MeV.

Beamline	L3 HAPLS	L4 ATON
Peak power	≥1 PW	10 PW
Energy in pulse	≥30 J	≥1.5 kJ
Pulse duration	≤30 fs	≤150 fs
Rep rate	10 Hz	1 per min
Supplier	LLNL	National Energetics
ELI- Beamlines	Compressor, short pulse diagnostics, controls & timing systems	Compressor design, OPCPA design, short pulse diagnostics, timing system

Queen's University Belfast

ELIMAIA, ELIBEAMLINES (CZ) ELICE INFO

24

ELIMAIA experimental area

30J / 30fs

Protons are emitted from metallic/plastic foils um thickness cut-off energy of up to ~40 MeV.

Beamline	L3 HAPLS	L4 ATON
Peak power	≥1 PW	10 PW
Energy in pulse	≥30 J	≥1.5 kJ
Pulse duration	≤30 fs	≤150 fs
Rep rate	10 Hz	1 per min
Supplier	LLNL	National Energetics
ELI- Beamlines	Compressor, short pulse diagnostics, controls & timing systems	Compressor design, OPCPA design, short pulse diagnostics, timing system

Laser-driven flash?

Not published data

Coil target

|--|

Dose [Gy]	Energy [MeV]	
69,47	16,9	
28	17,8	
12	19,3	reli
10,53	21,4	B
9,35	23,3	nai
11,85	25,1	2
10,8	27	es
13,5	28,8	ult
11,08	30,7	0)
10,69	32,6	
8,74	34,5	

Samples irradiation and radiobiology

Samples irradiation and radiobiology

28

Types of equipment into the Bio-Lab:

- $\checkmark Laboratory \ Hood$
- ✓Inverted microscopy
- ✓Centrifuge
- ✓Incubator
- ✓-80°C for storage of biological samples
- ✓ Dewar for long term storage of different cellular batch

Fluorescence Microscopy

16.25 megapixel CMOS image sensors for microscopy

High sensitivity Excellent linearity High – frame rate Low Noise

Integration with imaging SF

Pablo Cirrone, PhD - pablo.cirrone@lns.infn.it

Temperature: 2 eV - 200 eV 10⁴ $n pprox rac{I}{e^2 T}$ classical plasma 10³ Density: 10²⁵ m⁻³ $npprox rac{arepsilon_0 m_e \omega_p^2}{c^2}$ femperature (eV) 102 10**1** Ion beams in a wide Z range and energy **WDM** 100 up to 70 AMeV 10^{-1}

What we will have at disposal at I-LUCE?

29

An high power laser: 8J/23fs/1Hz

A plasma generated by the laser:

Istituto Nazionale di Fisica

Nuclear physics mid-term plan

Stopping power in plasma

Radioisotopes

Hydrogen generation

F20 OAP

Fig. 48 Setup for the high-brilliance γ production via inverse Compton-scattering (from Sarri et al. [371])

Positrons generation

Nuclear reaction schemes

Protons and electrons generation

Chapter 6.2 Laser applications

Future

31

ELI-Beamlines MoU

ELI-NP MoU

First official experiments at ELI-beamlines (ongoing)

Next ELI-Beamlines call: proof of principle for a neutron source with laser-driven electron and proton beams

Paper ongoing

Future

acarc	2. CELIA (Université de Bordeaux CELIA)	FR	UNI	Affiliated entity to CNRS - Participation to WP3, WP5, WP7
31	3. LULI (Ecole Polytechnique)	FR	UNI	Affiliated entity to CNRS -
	4. UPM (Universidad Politécnica de Madrid)	ES	UNI	
ELI-Beamlines Mol I	5. ETSI-ETSIAE (Higher Technical School of Aeronautical and Space Engineering)	ES	UNI	Affiliated entity to UPM -
	6. IFN (Instituto Fusion Nucleare)	ES	RTO	Affiliated entity to UPM -
	7. CLPU (Centro de <u>Láseres Pulsados</u> Ultracortos Ultraintensos)	ES	RTO	
ELI-NP MoU	8. ENEA (Italian National Agency for New Technologies, Energy and Sustainable Economic Development)	IT	RTO	
	9. INFN-LNS (Istituto Nazionale di Fisica Nucleare – Laboratori Nazionali del Sud)	IT	RTO	Affiliated entity to ENEA -
	10. CNR (Consiglio Nazionale Delle <u>Ricerche</u>)	IT	RTO	
First official experimen	11. GSI-JENA (Helmholtz Institute Jena)	DE	RTO	
	12. HZDR (Helmholtz Zentrum)	DE	RTO	Participation WP 4 and WP5
	13. STFC (UK Research and Innovation: Science and Technology Facilities Council)	U K	RTO	
Next ELI-Beamlines cal	14. HMU (Hellenic Mediterranean University)	GR	UNI	
course with lacer drive	15. FZU-PALS (Academy of Science of CZ)	CZ	ORG	
source with laser-drive	16. ELI-ERIC (Extreme Light Infrastructure - European Research Infrastructure Consortium)	CZ	RTO	Participation in WP2, WP5, and WP7
	17. ULisboa (Instituto Superior Técnico)	PT	RTO	
Paper ongoing	18. IPPiLM (Institute of Plasma Physics and Laser Microfusion)	PL	RTO	Participation in WP3, WP5, and WP7

PARTICIPANT NUMBER & NAME

Recherche Scientifique)

1. (Coo) - CNRS (Centre National de la

EU

FR

TYPE

RTO

ROLE

Coordinator

HIPER+ Initiative on Inertial Confinement Fusion as "affiliated" of ENEA

Future

31

ELI-Beamlines Mo

ELI-NP MoU

First official exper

Next ELI-Beamline source with laser-

Paper ongoing

High Power Lasers and Applications Workshop (next edition in November 2024 with an international Geant4 school)

Thanks to everyone

