Calcoli di radioprotezione e ottimizzazione per il centro di BNCT

Silva Bortolussi

Pavia

AdvaNced Technologies for Human-centEred Medicine

INFN4LS – Catania – 31/01/2024

BNCT route from neutrons to treatments

radiobiology

B measurements

treatment planning

accelerator

clinical centre

dosimetry

BNCT route from neutrons to treatments

Starting from the beginning (pre-PNRR era)

Starting from the beginning

I. Postuma et al., Biology, 10, 2021

Performance in real patient treatments

H&N patient treated in Finland, same irradiation configuration (2 fields, 2 sessions), same criterion to prescribe the irradiation time.

This beam has the same therapeutic effect as the one in Finland

I. Postuma et al., Biology, 10, 2021

Densified AIF₃ and AIF₃+ 2%LiF High density (~ 100%)

Study of mechanical properties ongoing

PhD Thesis Chiara Magni, 2022

Distribution of the rate of ambient dose equivalent, 5 min after the end of the treatment, due to the radioactivity induced in the BSA (left) and in presence of the lead shield on the BSA walls (right).

Activation of walls (Ca)

1% ¹⁰B in weight

Reac/cm³ s

Activation of the patient

Depending on irradiation position

		Head and Neck		Thorax		Lower Limb	
Isotope	Half-life	A_{ORD}	A_{BOR}	A_{ORD}	A_{BOR}	A_{ORD}	A_{BOR}
		[Bq/g]	[Bq/g]	[Bq/g]	[Bq/g]	[Bq/g]	[Bq/g]
Cl-38	$37.24 \min$	23.5	14.3	23.5	8.88	24.7	9.48
K-42	$12.360 \ h$	1.68	0.73	1.68	0.68	1.76	0.72
Fe-59	$44.503 \ d$	$2.7 \cdot 10^{-4}$	$1.4 \cdot 10^{-4}$	$2.7 \cdot 10^{-4}$	$1.3 \cdot 10^{-4}$	$2.8 \cdot 10^{-4}$	$1.4 \cdot 10^{-4}$

Residual specific activities of the soft tissue elements, at the end of a 2-hours irradiation

Head a	and Neck	The	orax	Lower Limb		
A_{ORD}	A_{BOR}	A_{ORD}	A_{BOR}	A_{ORD}	A_{BOR}	
[Bq/g]	[Bq/g]	[Bq/g]	[Bq/g]	[Bq/g]	[Bq/g]	
22.7	3.0	36.5	22.3	46.9	17.9	

Residual specific activities of the urine, at the end of a 2-hours irradiation

Ambient dose equivalent during irradiation

borated concrete

C. Magni et al., Appl Radiat Isotop 165, 2020

Air activation

Walls composition	a [Bq/g]		
concrete	5.6		
concrete + boron	0.07		
polyethylene	2.6		
polyethylene + lithium	0.22		

Dose in air

Distribution of the rate of ambient dose equivalent from the overall induced radioactivity, 5 min after a 2-hour irradiation, walls of ordinary concrete (left) and borated concrete (right)

32 mil

A

walls materials & thickness?

maze shape?

doors?

New target, new BSA

20-30mm

0.15mm 0.2mm

Planar, 20x20 cm Perpendicular to the p+ beam

BSA to be constructed

PhD Thesis Laura Bagnale, in progress

Facility simulation

A special concrete by Neuboron Medtech

Ba + 0.5% ¹⁰B

Recipe available under the agreement signed with Vanvitelli University

Comparison between different materials

Borated Baritic Concrete versus Portland Concrete

Vertical distribution in treatment room

Comparison between different materials

Borated Baritic Concrete versus Portland Concrete

• Maze hallway

Comparison between different materials

Borated Baritic Concrete versus Portland Concrete

Transition area

Ambient Neutron Dose Equivalent

Ambient Photon Dose Equivalent

Control area

Maze

Ambient Dose Equivalent - Accelerator area

Neutrons

Cost - effectiveness

Instead of:

test:

Example of results (20 cm of Ba+¹⁰B)

Same values as full thickness of Ba+¹⁰B!

Activity of walls - Radioactive isotopes

⁴¹Ar specific activity 15 min after shutdown: 24,8 Bq/g

Work in progress

15 minutes after shutdown:

- the activation of BSA represents the principal source for the H*(10) dose-rate \rightarrow Optimization of the BSA + shutter.
- the principal radioactive isotopes in the walls are Ba-139 (92%), Mn-56 (4%), Si-31 (1%). However, H*(10) due to walls << H*(10) due to BSA.

The specific activity of ⁴¹Ar 15 min after shutdown is 24.8 Bq/g \rightarrow Filtration and recirculation of air must be included. Calculation of Ar-41 activity outside the chimney

Workforce for radioprotection calculations

You tell what we need to calculate... and we do it!

Thank you for your attention <u>silva.bortolussi@pv.infn.it</u>

