Exploring New Physics — Rome, 15 February 2024

Flavor, EW precision & BSM

MAURO VALLI

INFN Rome

- Flavor violation in SM in charged weak-current <---> VCKM
- -> Flavor Changing Neutral Currents (FCNCs) ONLY @ one loop
- CKM matrix described by 4 params (3 angles and a CP phase)

$$V_{\rm CKM} = \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\bar{\rho} - i\bar{\eta}) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \bar{\rho} - i\bar{\eta}) & -A\lambda^2 & 1 \end{pmatrix} + \mathcal{O}(\lambda^4)$$

 $(\bar{\rho},\bar{\eta})$ apex of $V_{ub}^*V_{ud} + V_{cb}^*V_{cd} + V_{tb}^*V_{td} = 0$

SM UT Analysis — 2023

Rend.Lincei Sci.Fis.Nat. 34 (2023) $37 = 0.160 \pm 0.009$ $\eta = 0.345 \pm 0.011$

pull(# σ) = 2.4 (0.1) for $|V_{cb}^{\text{excl}}| \times 10^3 = 40.55 \pm 0.46$ (for $|V_{cb}^{\text{incl}}| \times 10^3 = 42.16 \pm 0.50$), pull(# σ) = 1.6 (0.3) for $|V_{ub}^{\text{incl}}| \times 10^3 = 4.13 \pm 0.26$ (for $|V_{ub}^{\text{excl}}| \times 10^3 = 3.64 \pm 0.16$),

Special Article - Tools for Experiment and Theory

BEST CODE

HEPfit: a code for the combination of indirect and direct constraints on high energy physics models

J. de Blas^{1,2}, D. Chowdhury^{3,4}, M. Ciuchini⁵, A. M. Coutinho⁶, O. Eberhardt⁷, M. Fedele⁸, E. Franco⁹, G. Grilli di Cortona¹⁰, V. Miralles⁷, S. Mishima¹¹, A. Paul^{12,13,a}, A. Peñuelas⁷, M. Pierini¹⁴, L. Reina¹⁵, L. Silvestrini^{9,16}, M. Valli¹⁷, R. Watanabe⁵, N. Yokozaki¹⁸

[1910.14012]

https://hepfit.roma1.infn.it

https://github.com/silvest/HEPfit

B ANOMALIES : CIRCA 2023

QCD ~ LEPTON UNIVERSAL NP

The EW fit: Key test of the selection rules of the SM

SM analysis

 $G_F, \alpha, M_Z, M_H, m_t, \alpha_S(M_Z), \Delta \alpha_{had}^{(5)}$

- predict EWPO (*Z*-pole, *W* obs.) as function of these quantities
- compare with data in order to determine posteriors (Bayesian)

NP analysis

SM inputs + NP parameters

- predict EWPO generalized to NP
- constraints on / discovery of NP

puis

in the SM in g different o y ranges. D in Figure 3

ments

nd (

men

σ)

t [M₁,=(80.43335d+fr.0094)e posterior of su

Experimental inputs

iser Form we combine.

previous average

 m_t =172.58 ± 0.45 GeV

- 2016 Tevatron combination
- ATLAS Run 1 and Run2 results
 - CMS Run 1 and Run 2 results
- Recent CMS I+j measurement [m_t=(1)]

Experimental inputs Experimental inputs

Experimental inputs

ements are shown in grey. The corresponding re-

m,=17

- Input parameters: α , $G_{F_{,}}\alpha_{s}(M_{Z})$, M_{Z} , M_{H} , m_{t} , $\Delta \alpha_{had}^{(5)}$
- To get $\alpha(M_Z) \longrightarrow \Delta \alpha_{had}^{(5)}$: from Lattice QCD + perturbative runn

What I did with prof. Nardecchia besides talking about Totti — Claudio Toni

Chiral Exotic Leptons

«Chiral» fermion ↓ Get mass from the SM Higgs ↓ Highly constrained by Higgs observables

<u>Advantage:</u> Induce harmless Wess-Zumino terms otherwise potentially dangerous in $U(1)_X$ extension of the SM

Dror, Lasenby, Pospelov [arxiv:1705.06726]

We considered an explicit viable content of chiral exotic leptons

$$\mathcal{L}_{L,R} = \begin{pmatrix} \mathcal{N}_{\mathcal{L}} \\ \mathcal{E}_{\mathcal{L}} \end{pmatrix}_{L,R} \sim (\mathbf{1}, \mathbf{2})_{Y}, \quad \mathcal{E}_{L,R} \sim (\mathbf{1}, \mathbf{1})_{Y-\frac{1}{2}}, \quad \mathcal{N}_{L,R} \sim (\mathbf{1}, \mathbf{1})_{Y+\frac{1}{2}}$$

Di Luzio, Nardecchia, Toni Phys.Rev.D 105 (2022) 11

What I did with prof. Nardecchia besides talking about Totti — Claudio Toni

Chiral Exotic Leptons

We considered an explicit viable content of chiral exotic leptons

$$\mathcal{L}_{L,R} = \begin{pmatrix} \mathcal{N}_{\mathcal{L}} \\ \mathcal{E}_{\mathcal{L}} \end{pmatrix}_{L,R} \sim (\mathbf{1}, \mathbf{2})_{Y}, \quad \mathcal{E}_{L,R} \sim (\mathbf{1}, \mathbf{1})_{Y-\frac{1}{2}}, \quad \mathcal{N}_{L,R} \sim (\mathbf{1}, \mathbf{1})_{Y+\frac{1}{2}}$$

Barducci, Di Luzio, Nardecchia, Toni JHEP 12 (2023) 154

The model is perturbatively excluded by recast of direct searches constraints!

Same sign leptons exp. signature

 $\Psi^{\mathcal{E}_i} \to W^- \ell^- \to \ell^- \ell^- \not\!\!\! E_T$

Perturbative bound on Yukawa couplings:

 $m_{\Psi}\varepsilon_{\rm 1,2}\,\lesssim\,400$ GeV.

... CAN WE SLEEP WELL AT NIGHT ?

