

Kaon Production Study with MicroBooNE and DUNE

ESR Monthly Update January 2024

Natsumi Taniuchi – University of Cambridge ntaniuchi@hep.phy.cam.ac.uk

Supervisor: Dr Melissa Uchida mauchida@hep.phy.cam.ac.uk

1

K⁺ cross section measurement: Why Kaons?

Importance of K⁺ study:

- Nucleon decay modes involving *K*⁺ at final states
- Provide better understanding of *K*⁺ inside LArTPC
- No K^+ xsec on Ar or other targets at 1 GeV ν energy region

MicroBooNE Experiment

- 85 ton LArTPC running 2015 2021
- 0.25-2 GeV ν beam from the Booster Neutrino Beam (BNB) and the Neutrino Main Injector (NuMI)
- My Analysis: CC K⁺ production analysis with NuMI
 K⁺ selection by BDT
 - \succ Reconstruction Algorithm exclusive for K^+ daughters

$p \rightarrow \overline{\nabla} K^{+}$ $p \left\{ \begin{array}{cc} u & \overline{\widetilde{W}} & \widetilde{q} & \overline{H}_{c} \\ u & \overline{\widetilde{Q}} & \overline{q} & \overline{S} \\ d & \overline{\widetilde{q}} & d \end{array} \right\} K$

MicroBooNE detector

Overview of K^+ Production

Associated kaon production:

Kaon accompanied by a hyperon in the final state $\nu_{\mu} + n \rightarrow \mu^{-} + K^{+} + \Lambda^{0} (E_{thres}: 1.1 \text{ GeV})$

✓ Single kaon production:

Single kaon produced in the final state $\nu_{\mu} + p \rightarrow \mu^{-} + K^{+} + p \ (E_{thres}: 0.8 \text{ GeV})$

 $\begin{array}{ll} K^+ \to \mu^+ \nu_\mu & (\sim\!63.6\%) & K^+ \to \pi^+ \pi^+ \pi^- \; (\sim\!5.6\%) \\ K^+ \to \pi^+ \pi^0 & (\sim\!20.7\%) & K^+ \to \pi^0 e^+ \nu_e \; (\sim\!5.0\%) \\ K^+ \to \pi^+ \pi^0 \pi^0 \; (\sim\!1.8\%) \end{array}$

K⁺ Event Features and Training BDT

- ✓ NuMI MC + Generated ~20k samples in total for single/associated CC K^+ signals
- ✓ Select variables well characterize true/BG events for BDT training:

```
\chi^2_{3pl} = \frac{\chi^2_{pl0} \times w_{pl0} + \chi^2_{pl1} \times w_{pl1 + \chi^2_{pl2} \times w_{pl2}}}{w_{pl0} + w_{pl1} + w_{pl2}},
```


BDT Selection with MC Simulation

Better performance with BDT Selected Events

Run Subrun Event	True Interaction	<i>K</i> + candidate true PDG	<i>K</i> + daughter candidate true PDG	FV	K Process]
6535 42 2101	CC RES $\nu_{\mu} Ar \rightarrow \mu^{-} \Sigma^{0} K^{+}$	321	-13	\checkmark	Decay at rest	
6549 20 1014	CC DIS $\nu_{\mu} Ar \rightarrow \mu^{-} \Lambda^{0} K^{+} n p$	321	-13	\checkmark	Decay at rest	
6637 58 2914	CC RES $\nu_{\mu} Ar \rightarrow \mu^{-} \Lambda^{0} K^{+}$	321	-13	\checkmark	Decay at rest	
6605 85 4264	CC RES $\nu_{\mu} Ar \rightarrow \mu^{-} \Lambda^{0} K^{+} n 2p$	321	-13	\checkmark	Inelastic	
6689 43 2152	CC DIS $\nu_{\mu} Ar \rightarrow \mu^{-} \Lambda^{0} K^{+}$	321	-13	\checkmark	Decay at rest	
6572 218 10949	CC DIS $\nu_{\mu} Ar \rightarrow \mu^{-} \Sigma^{+} K^{+} \pi^{+} n$	321	-13	\checkmark	Decay at rest	
6599 30 1530	CC RES $\nu_{\mu} Ar \rightarrow \mu^{-} \Lambda^{0} K^{+}$	321	-13	\checkmark	Inelastic	
6572 226 11334	CC RES $\nu_{\mu} Ar \rightarrow \mu^{-} \Lambda^{0} K^{+}$	321	-13	\checkmark	Decay at rest	Eff: 5.4% Pur: 71%
6589 64 3207	CC DIS $\nu_{\mu} Ar \rightarrow \mu^{-} \Sigma^{+} K^{+} 8p \ 3n \ \pi^{+} \ \pi^{-} \ \pi^{0}$	321	-13	\checkmark	Decay at rest	E*P: 0.038
7004 549 27485	CC DIS $\nu_{\mu} Ar \rightarrow \mu^{-} \Lambda^{0} K^{+}$	321	-13	\checkmark	Decay at rest	BDT cut
6605 10 526	CC DIS $\nu_{\mu} Ar \rightarrow \mu^{-} \Lambda^{0} K^{+}$	321	-13		Decay at rest	
6888 124 6632	NC DIS $\nu_{\mu} Ar \rightarrow \mu^{-} \Lambda^{0} K^{+} \pi^{0}$	321	-13		Inelastic	Same
6908 91 4597	NC DIS $\nu_{\mu} Ar \rightarrow \nu_{\mu} \Sigma^{-} K^{+}$	321	-13		Inelastic	as BDT w
6674 21 1095	NC DIS $\nu_{\mu} Ar \rightarrow \nu_{\mu} \Sigma^{-} K^{+} n$	321	-13		Decay in flight	track length.

Better performance with BDT Selected Ever Can be missing a few events from $K^+ \rightarrow \mu^+ \nu_{\mu}$ (~63.6%) $K^+ \rightarrow \pi^+ \pi^0$ (~20.7%)

K+ candidate K+ daughter Run | Subrun | Event **True Interaction** FV **K** Process true PDG candidate true PDG CC RES $\nu_{\mu} Ar \rightarrow \mu^{-} \Sigma^{0} K^{+}$ 6535 | 42 | 2101 321 -13 \checkmark Decay at rest 6549 | 20 | 1014 CC DIS $\nu_{\mu} Ar \rightarrow \mu^{-} \Lambda^{0} K^{+} n p$ 321 -13 Decay at rest \checkmark CC RES $\nu_{\mu} Ar \rightarrow \mu^{-} \Lambda^{0} K^{+}$ 6637 | 58 | 2914 321 -13 \checkmark Decay at rest CC RES $\nu_{\mu} Ar \rightarrow \mu^{-} \Lambda^{0} K^{+} n 2p$ 6605 | 85 | 4264 321 -13 \checkmark Inelastic CC DIS $\nu_{\mu} Ar \rightarrow \mu^{-} \Lambda^{0} K^{+}$ 6689 | 43 | 2152 Decay at rest 321 -13 \checkmark CC DIS $\nu_{\mu} Ar \rightarrow \mu^{-} \Sigma^{+} K^{+} \pi^{+} n$ 6572 | 218 | 10949 321 -13 \checkmark Decay at rest CC RES $\nu_{\mu} Ar \rightarrow \mu^{-} \Lambda^{0} K^{+}$ 6599 | 30 | 1530 321 \checkmark -13 Inelastic Eff: 5.4% CC RES $\nu_{\mu} Ar \rightarrow \mu^{-} \Lambda^{0} K^{+}$ 6572 | 226 | 11334 Decay at rest 321 -13 \checkmark **Pur: 71%** CC DIS $\nu_{\mu} Ar \rightarrow \mu^- \Sigma^+ K^+ 8p \ 3n \ \pi^+ \ \pi^- \ \pi^0$ E*P: 0.038 6589 | 64 | 3207 321 -13 Decay at rest \checkmark **BDT cut** CC DIS $\nu_{\mu} Ar \rightarrow \mu^{-} \Lambda^{0} K^{+}$ 7004 | 549 | 27485 321 Decay at rest -13 \checkmark @0.19 CC DIS $\nu_{\mu} Ar \rightarrow \mu^{-} \Lambda^{0} K^{+}$ 6605 | 10 | 526 Decay at rest 321 -13 Same NC DIS $\nu_{\mu} Ar \rightarrow \mu^{-} \Lambda^{0} K^{+} \pi^{0}$ 6888 | 124 | 6632 321 -13 Inelastic breakdown NC DIS $\nu_{\mu} Ar \rightarrow \nu_{\mu} \Sigma^{-} K^{+}$ 6908 | 91 | 4597 321 -13 Inelastic as BDT w track length. NC DIS $\nu_{\mu} Ar \rightarrow \nu_{\mu} \Sigma^{-} K^{+} n$ Decay in flight 6674 | 21 | 1095 321 -13

Event displays for $\pi^+ \pi^0$ signal

✓ Most (~90%) K + decay at rest ✓ π^0 will decay into 2γ ✓ π^+ has distinct and long track length of 30cm

UNIVERSITY OF CAMBRIDGE

Pandora Reconstruction Failure: π^+ Merging into a shower / track

Reconstruction Improvement Idea: Separating Hits of π^+ and π^0

 π^+ tracks are rarely reconstructed as π^+ hits get merged into showers from π^0 .

 \rightarrow Can we separate π^+/π^0 hits?

Reconstruction Improvement Idea: Separating Hits of π^+ and π^0

From Isobel Mawby's PhD Thesis

 π^+ tracks are rarely reconstructed as π^+ hits get merged into showers from π^0 .

 \rightarrow Can we separate π^+/π^0 hits?

<u>Isobel Mawby</u>'s PhD study at DUNE: Shower refinement algorithm for $CC\nu_e$

- *e* showers disconnected from initial track-like region
- γ showers merge into e shower
- Find continuous hits from the shower spine of e
- > Remove contamination hits of γ

Reconstruction Improvement Idea: Separating Hits of π^+ and π^0

12

How HitSplitAlgorithm works

1. Define Region of Interest

- ✓ Define Region of Interest (RoI): 3D sphere centered at end of K+ track
- Collect hits from reconstructed daughter track/shower inside Rol

2. Get Angular Distribution of Hits

3. Obtain Directions of Daughter μ^+/π^+ Tracks

UNIVERSITY OF CAMBRIDGE

Separating π^+/π^0 Hits in $K^+ \rightarrow \pi^+\pi^0$ Event

4. Collect π^+/μ^+ -like Hits from Sliding Linear Fit

To collect π^+/μ^+ like hits, <u>step paths</u> are defined by a start position, direction and length.

✓ First step: direction of π^+/μ^+ and K^+ track end

✓ Later steps: by sliding linear fit with collected hits

Hits are collected if:

- 1. their projection onto the step's path lies between the step's start and end points.
- 2. their transverse distance from the step path is less than 1cm.
- ✓ Repeat until no additional hits are collected.
- Rebuild reco:track by <u>LArPandoraTrackCreation</u>

Before and After Introducing HitSplitAlgorithm

Event filter: True Associated Production K^+ event with reconstructed primary track with true K^+ PDG

Before and After Introducing HitSplitAlgorithm

Event filter: True Associated Production K^+ event with reconstructed primary track with true K^+ PDG

Reconstruction efficiency daughter track with correct ($\pm 10\%$) track length

UNIVERSITY OF

20

How This Could Help DUNE

\checkmark CC K^+ Production study with NuMI at MicroBooNE

- Algorithm is under development and needs further tuning and testing with signal/BG MC
- > With reconstruction algorithm:
 - $K^+ \rightarrow \mu^+ \nu_{\mu}$: μ^+ track reco eff. improvement by ~20%
 - $K^+ \rightarrow \pi^+ \pi^0$: π^+ track reco eff. improvement by ~400%, comparable to $K^+ \rightarrow \mu^+ \nu_{\mu}$

✓ Application to DUNE

- PDK search
 - Improvement of μ^+ track reconstruction
 - Possibility for $p \to \bar{\nu}K^+$, $K^+ \to \pi^+\pi^0$ observation
- \succ K⁺ production
 - Larger statistics with higher ν energy and larger detector volume
 - First CC $K^+ \rightarrow \pi^+ \pi^0$ measurement ever

Summary and Outlooks

✓ Neutrino induced K+ production study at MicroBooNE

- Developed pandora reconstruction algorithm exclusive for K+
- Checking the performance of this algorithm with signal and BG MCs
- Currently building a new BDT for signal/BG selection and systematic error estimations undergoing
- ✓ Proton decay search at DUNE
 - Importing the reconstruction algorithm for K+ from MicroBooNE to DUNE
 - Estimate the reconstruction improvement of K+ daughter particles on DUNE proton decay samples
 - Aim to enhance the sensitivity of future $p \to \bar{\nu}K^+$, $K^+ \to \mu^+\nu_{\mu}$ and seek the possibility of new proton decay search channel: $p \to \bar{\nu}K^+$, $K^+ \to \pi^+\pi^0$

