# Neutrino reconstruction analysis at ICARUS detector 



Maria Artero Pons - Università degli Studi di Padova and INFN Padova
As part of the ICARUS Collaboration
Monthly Early Stage Researchers Meeting of Intense - 27 ${ }^{\text {th }}$ December 2023


Dipartimento di Fisica
e Astronomia
Galileo Galilei


## Short-Baseline Neutrino Program at Fermilab



- Several anomalies have been observed in neutrino oscillation experiments, some of them can be explained by introducing an additional sterile neutrino state ( $v_{s}$ )
- Short Baseline Neutrino (SBN) program should clarify this question by exploiting the BNB beam and comparing the neutrino interactions observed at different distances along the baseline by ICARUS and SBND (LArTPC detectors)


## The ICARUS detector



## Short Baseline Neutrino Program at FNAL

- BNB is a well characterized $v_{\mu}$-beam, able to produce $v$ and $\bar{v}$ beams with low $v_{e}$ contamination

$\left(0.5 \% v_{e}\right.$ content $)$

*Using best fit values


## Short Baseline Neutrino Program at FNAL

- BNB is a well characterized $v_{\mu}$-beam, able to produce $v$ and $\bar{v}$ beams with low $v_{e}$ contamination
- ICARUS is also exposed off-axis to the NuMI beam and can access the $v_{e}$ rich component of the spectrum
- Both $v_{e}$ appearance and $v_{\mu}$ disappearance channels can be observed, granting access to study the nature of the observed anomalies and shed light on the existence of sterile neutrinos



## Neutrino event selection

- A first step towards this goal is to focus on the study of $v_{\mu}$ CC quasi elastic interactions with the BNB
- These are selected by requiring:

1. $v$ vertex should be inside the fiducial volume i.e., 25 cm apart from the lateral TPC walls and $30 / 50 \mathrm{~cm}$ from the upstream/downstream walls
2. Fully contained interactions i.e., no signal in the last 5 cm of the LAr active volume
3. Stopping muon of $L_{\mu}>50 \mathrm{~cm}$

- To further simplify, we can consider $1 \mu 1 p$ candidates

4. Only 1 proton $L_{p}>1 \mathrm{~cm}$ produced at the primary
 vertex

## Neutrino event selection

- A first step towards this goal is to focus on the study of $v_{\mu} \mathrm{CC}$ quasi elastic interactions with the BNB
- These are selected by requiring:

Transverse View $(x, y)$
1.

1. $v$ vertex should
cm apart from
from the upstre
2. Fully containe
5 cm of the LAr
3. Stopping muon
check our automatic reconstruction tools!
Simplify, we can consider $1 \mu 1 p$ candidates
4. Only 1 proton $L_{p}>1 \mathrm{~cm}$ produced at the primary
vertex

## Event reconstruction with visually selected events

- For each visually scanned event the 3D positions of the vertex, end muon and end proton (when present) are saved

- Comparison of scan interactions with their automatic reconstruction for muon tracks
- In $\sim 70 \%$ of the cases the reconstructed vertex and end position of the muon are within 15 cm from the scanned information



## Particle identification

- The identification of the $v$ interactions requires a Particle Identification (PID) tool to effectively recognise the particles at the primary vertex
- The current algorithm relies on the comparison between the measured $d E / d x$ vs residual range along the track with the theoretical profiles from different particles $(\mu, p, K, \pi)$
- The $\chi^{2}$ fit is performed considering only the last 25 cm of the track




## Neutrino transverse momenta

- Well reconstructed events are selected and the $\mu$ and $p$ momenta computed from their range
- Kinematic event reconstruction is obtained through the total transverse momentum
- The transverse momentum of genuine $v_{\mu} C C Q E$ events $\rightarrow$ dominated by the Fermi momentum in Ar nuclei



## Neutrino transverse momenta

- Well reconstructed events are selected and the $\mu$ and $p$ momenta computed from their range
- Kinematic event reconstruction is obtained through the total transverse momentum
- The transverse momentum of genuine $v_{\mu} C C Q E$ events $\rightarrow$ dominated by the Fermi momentum in Ar nuclei



## Monte Carlo comparison

- Reproduce same analysis with true $1 \mu 1 p$ MC events ( $\sim 8 \%$ )



## Monte Carlo comparison

- It is clear from the transverse momenta plot that we are missing something...
- The visual scanning is really helpful tool to evaluate the performance of the selection and reconstruction algorithms, but it also has some limitations
- All particles are identified based on their ionization. Hence, it is possible that different hadrons are wrongly classified as protons
- Very short protons are not visible $\rightarrow$ mis identified as $1 \mu 1 p$ candidates
- Neutrons and $\sim \mathrm{MeV}$ photons produced at primary vertex are very difficult to recognize, unless they do some interaction


## Monte Carlo comparison

- It is clear from the transverse momenta plot that we are missing something...
- The visual scanning is really helpful tool to evaluate the performance of the selection and reconstruction algorithms, but it also has some limitations
- All particles are identified based on their ionization. Hence, it is possible that different hadrons are wrongly classified as protons
- Very short protons are not visible $\rightarrow$ mis identified as $1 \mu 1 p$ candidates
- Neutrons and $\sim \mathrm{MeV}$ photons produced at primary vertex are very difficult to recognize, unless they do some interaction

> Need to establish a visibility condition for protons, neutrons and photons to have a more accurate comparison between MC and real data

## High transverse momentum event



Wire direction

## Signal definition of $1 \mu 1 p$

- Sample of "Visible $\mathbf{1} \boldsymbol{\mu} \mathbf{1} \boldsymbol{p}$ " events are defined as
- $v_{\mu} C C$ events with the interaction vertex inside the fiducial volume
- Only 2 visible particles coming out from the primary vertex
- Primary proton is visible if $\mathrm{E}_{\mathrm{k}}>25 \mathrm{MeV}(\sim 6 \mathrm{~mm})$
- Primary neutron is visible if $\mathrm{E}_{\mathrm{dep}}>25 \mathrm{MeV}$
- Primary photon is visible $\mathrm{E}_{\mathrm{dep}}>10 \mathrm{MeV}$
- The 2 "visible" tracks need to be 1 muon and 1 proton

Visible $1 \mu 1 p$ sample

True $1 \mu 1 p$
$+$
$1 \mu 1 p+$ low energy $p, n, \gamma$

- Visible particles both fully contained within 5 cm from the active borders
- Muon and proton lengths of at least 50 cm and 1 cm respectively


## Monte Carlo cross check

- With the new definition $\rightarrow$ better agreement between neutrino transverse momentum (MC) and data




## Automatic selection

- Due to the large number of collected events an automatic procedure to select $1 \mu 1 p$ is mandatory
- A lot of effort is ongoing to maximize its efficiency and purity


These are the selected QE events which are $1 \mu 1 p$

## Conclusions and perspectives

- Preliminary results were obtained proving ICARUS' capability to perform calorimetric studies and particle identification $\rightarrow>$ essential for oscillation studies
- Detailed study on MC events were performed and work is ongoing to improve the signal definition
- Collected neutrino candidates are being used to further develop and tune an automatic selection + reconstruction software tools to analyse $v_{\mu} C C$ events
- Efforts are underway to measure the energy of neutrinos and its resolution

THANK YOU!

## ICARUS Collaboration at SBN

P. Abratenko ${ }^{19}$, A. Aduszkiewicz ${ }^{21}$, F. Akbar ${ }^{23}$, M. Artero Pons ${ }^{15}$, J. Asaadi ${ }^{24}$, M. Babicz ${ }^{2}$, W.F. Badgett ${ }^{5}$, L.F. Bagby $^{5}$, B. Baibussinov ${ }^{15}$, B. Behera ${ }^{4}$, V. Bellini ${ }^{7}$, O. Beltramello ${ }^{2}$, R. Benocci ${ }^{13}$, J. Berger ${ }^{4}$, S. Berkman ${ }^{5}$, S. Bertolucci $^{6}$, M. Betancourt ${ }^{5}$, K. Biery ${ }^{5}$, M. Bonesini ${ }^{13}$, T. Boone ${ }^{4}$, B. Bottino ${ }^{8}$, A. Braggiotti ${ }^{15}$, J Bremer ${ }^{2}$, S. Brice $^{5}$, V. Brio ${ }^{7}$, C. Brizzolari ${ }^{13}$, J. Brown ${ }^{5}$, H. Budd ${ }^{23}$, A. Campani ${ }^{8}$, A. Campos ${ }^{27}$, D. Carber ${ }^{4}$, M. Carneiro ${ }^{1}$, H. Carranza ${ }^{24}$, D. Casazza ${ }^{8}$, A. Castro ${ }^{3}$, M. Cicerchia ${ }^{15}$, S. Centro ${ }^{15}$, G. Cerati ${ }^{5}$, M. Chalifour ${ }^{2}$, A.Chatterjee ${ }^{26}$,D. Cherdack $^{21}$, S. Cherubini ${ }^{11}$, N. Chitirasreemadam ${ }^{25}$, T. Coan ${ }^{18}$, A. Cocco ${ }^{14}$, M. R. Convery ${ }^{17}$, S. Copello ${ }^{16}$, A. De Roeck ${ }^{2}$, S. Di Domizio ${ }^{8}$, D. Di Ferdinando ${ }^{6}$, L. Di Noto ${ }^{8}$, M. Diwan ${ }^{1}$, S. Donati ${ }^{25}$, J. Dyer ${ }^{4}$, S. Dytman ${ }^{22}$, S. Dolan ${ }^{2}$, F. Dolek ${ }^{27}$, L. Domine ${ }^{17}$, R. Doubnik ${ }^{5}$, F. Drielsma ${ }^{17}$, C. Fabre ${ }^{2}$, A. Falcone ${ }^{13}$, C. Farnese ${ }^{15}$, A. Fava ${ }^{5}$, F. Ferraro ${ }^{8}$, F. Garcia ${ }^{17}$, C. Gatto ${ }^{14}$, M. Geynisman ${ }^{5}$, D. Gibin ${ }^{15}$, A. Gioiosa ${ }^{25}$, W. Gu ${ }^{1}$, M. Guerzoni ${ }^{6}$, A. Guglielmi ${ }^{15}$, S. Hahn ${ }^{5}$, A. Heggestuen ${ }^{4}$, B. Howard ${ }^{5}$, R.Howell ${ }^{23}$, J. Hrivnak ${ }^{2}$, C. James ${ }^{5}$, W. Jang ${ }^{24}$,L. Kashur ${ }^{4}$, W. Ketchum ${ }^{5}$, J.S. Kim $^{23}$, D.H. Koh ${ }^{17}$, U. Kose ${ }^{2}$, J. Larkin ${ }^{1}$, G. Laurenti ${ }^{6}$, G. Lukhanin ${ }^{5}$, A. Maria ${ }^{26}$, C. Mariani ${ }^{27}$, C. Marshall ${ }^{23}$, S. Martinenko ${ }^{1}$, N. Mauri ${ }^{6}$, A. Mazzacane ${ }^{5}$, K.S. McFarland ${ }^{23}$, D.P. Mendez ${ }^{1}$, G. Meng ${ }^{15}$, A. Menegolli ${ }^{16}$, O.G. Miranda ${ }^{3}$, D. Mladenov ${ }^{2}$, A.Mogan ${ }^{4}$, N. Moggi ${ }^{6}$, N.Montagna ${ }^{6}$, A. Montanari ${ }^{6}$, C. Montanari ${ }^{5}$, , M. Mooney ${ }^{4}$, G. Moreno Granados ${ }^{3}$, J. Mueller ${ }^{4}$, M. Murphy ${ }^{27}$, D. Naples ${ }^{22}$, M. Nessi ${ }^{2}$, T. Nichols ${ }^{5}$, S. Palestini ${ }^{2}$, M. Pallavicini ${ }^{8}$, V. Paolone ${ }^{22}$, R. Papaleo ${ }^{11}$, L. Pasqualini ${ }^{6}$, L. Patrizii ${ }^{6}$, G. Petrillo ${ }^{17}$, C. Petta ${ }^{7}$, V. Pia ${ }^{6}$, F. Pietropaolo ${ }^{2, a}$, F. Poppi ${ }^{6}$, M. Pozzato ${ }^{6}$, A. Prosser ${ }^{5}$, G. Putnam ${ }^{20}$, X. Qian ${ }^{1}$, A. Rappoldi ${ }^{16}$, R. Rechenmacher ${ }^{5}$, L. Rice ${ }^{22}$, E. Richards ${ }^{22}$, F. Resnati $^{2}$, A.M. Ricci ${ }^{25}$, A.Rigamonti ${ }^{2}$, G.L. Raselli ${ }^{16}$, M. Rosemberg ${ }^{19}$, M. Rossella ${ }^{16}$, C. Rubbia ${ }^{9}$, G. Savage ${ }^{5}$, A. Scaramelli ${ }^{16}$, D. Schmitz ${ }^{20}$, A. Schukraft ${ }^{5}$, F. Sergiampietri ${ }^{2}$, G. Sirri ${ }^{6}$, J. Smedley ${ }^{23}$, A. Soha ${ }^{5}$, L. Stanco ${ }^{15}$,J. Stewart ${ }^{1}$,N.B. Suarez ${ }^{22}$, H.Tanaka ${ }^{17}$, M. Tenti ${ }^{6}$, K.Terao ${ }^{17}$, F. Terranova ${ }^{13}$, V.Togo ${ }^{6}$, D.Torretta ${ }^{5}$, M.Torti ${ }^{13}$, Y.T. Tsai ${ }^{17}$, S.Tufanli ${ }^{2}$, T. Usher ${ }^{17}$, F.Varanini ${ }^{15}$, S. Ventura ${ }^{15}$, M.Vicenzi ${ }^{1}$, C. Vignoli ${ }^{10}$, B.Viren ${ }^{1}$, D. Warner ${ }^{4}$, Z. Williams ${ }^{24}$, P. Wilson ${ }^{5}$, R.J. Wilson ${ }^{4}$, J. Wolfs ${ }^{23}$, T. Wongjirad ${ }^{19}$, A. Wood ${ }^{21}$, E. Worcester ${ }^{1}$, M. Worcester ${ }^{1}$, M. Wospakrik ${ }^{5}$, H. Yu ${ }^{1}$, J. Yu ${ }^{24}$, A. Zani ${ }^{12}$, C. Zhang ${ }^{1}$, J. Zennamo ${ }^{5}$, J. Zettlemoyer ${ }^{5}$, S. Zucchelli ${ }^{6}$, M. Zuckerbrot ${ }^{5}$

## Spokesperson: C. Rubbia, GSSI

12 INFN groups, 12 US institutions, CERN, 1 Institution from Mexico and India

1. Brookhaven National Lab., USA
2. CERN, Switzerland
3. CINVESTAV, Mexico,
4. Colorado State University, USA
5. Fermi National Accelerator Lab., USA
6. INFN Bologna and University, Italy
7. INFN Catania and University, Italy
8. INFN Genova and University, Italy
9. INFN GSSI, L’Aquila, Italy
10. INFN LNGS, Assergi, Italy
11. INFN LNS, Catania, Italy
12. INFN Milano, Milano, Italy
13. INFN Milano Bic. and University, Italy 14. INFN Napoli, Napoli, Italy 15. INFN Padova and University, Italy 16. INFN Pavia and University, Italy
14. SLAC National Accelerator Lab., USA
15. Southern Methodist University, USA
16. Tufts University, USA
17. University of Chicago, USA
18. University of Houston, USA
19. University of Pittsburgh, USA
20. University of Rochester, USA
21. University of Texas (Arlington), USA
22. INFN Pisa and University, Italy
23. Ramanujan Faculty Phys. Res. India
24. Virginia Tech Institute
a On Leave of Absence from INFN Padova
b On Leave of Absence from INFN Pavia

## BACKUP SLIDES



- Energy distributions for neutrons and photons exiting the primary vertex
- Deposited energy of neutrons is defined as the sum of all deposited energy of its daughter particles

- Well reconstructed event means:
- Reconstructed vertex in agreement with the information from the scanning/MC within 2 cm
- The muon track should be recognized as primary particle in the interaction
- The muon track should start within 2 cm from the reconstructed vertex
- The muon track should end within 2 cm from the scanning/MC position
- The particle identification (PID) algorithm should correctly classify the muon track
- The start/end point of the proton should be well recognized, similarly to the muon
- The PID algorithm should correctly identify the proton track as a proton candidate

